
计算机科学与探索
Journal of Frontiers of Computer Science and Technology

1673-9418/2024/18(04)-1083-11
doi: 10.3778/j.issn.1673-9418.2307023

基于AECD词嵌入的挖矿恶意软件早期检测方法

曹传博 1，郭 春 1+，李显超 2，申国伟 1

1.贵州大学 计算机科学与技术学院 公共大数据国家重点实验室，贵阳 550025

2.贵州翔明科技有限责任公司，贵阳 550025

+通信作者 E-mail: gc_gzedu@163.com

摘 要：挖矿恶意软件会损害系统安全，缩减硬件寿命，以及造成大量电力消耗，实施对挖矿恶意软件的早期

检测以及时阻止其损害对于维护系统安全至关重要。现有的基于动态分析的挖矿恶意软件早期检测方法未

能兼顾检测的及时性和准确率。为及时且准确地检测挖矿恶意软件，将挖矿恶意软件运行初期所调用的一定

长度的API（application programming interface）名称、API操作类别和调用API的DLL（dynamic link library）进行

融合以更充分地描述其在运行初期的行为信息，提出AECD（API embedding based on category and DLL）词嵌

入方法并进一步提出基于AECD词嵌入的挖矿恶意软件早期检测方法（CEDMA）。CEDMA以软件在运行初

期所调用的一定长度的API序列为检测对象，使用AECD词嵌入和TextCNN（text convolutional neural network）建

立检测模型来实施对挖矿恶意软件的早期检测。实验结果显示，CEDMA以软件运行后首次调用的长度为 3 000

的API序列作为输入时，可分别以 98.21%、96.76%的Accuracy值检测实验中已知和未知的挖矿恶意软件样本。
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Abstract: Cryptomining malware can compromise system security, reduce hardware lifetime, and cause significant

power consumption. Therefore, implementing cryptomining malware early detection to stop its damage in time is

critical to system security. The existing dynamic analysis-based cryptomining malware early detection methods are

hard to balance the timeliness and accuracy of detection. To detect cryptomining malware accurately and timely, this

paper integrates a certain length of API (application programming interface) names, API operation categories and

DLLs (dynamic link libraries) called by cryptomining malware in the early stage of operation to more fully describe

its behavioral information in this stage, and proposes the AECD (API embedding based on category and DLL) em-

bedding and further proposes a cryptomining malware early detection method based on AECD embedding (CEDMA).

CEDMA uses the API sequence called by software in the early stage of operation as the object of detection and uses
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由于加密货币匿名性的特点及其逐渐攀升的交

易价格 [1]，近年来网络攻击者越来越青睐能够实现非

法挖矿的挖矿恶意软件以获取经济利益。挖矿恶意

软件被植入目标主机后会极大地消耗电力资源并影

响受感染主机上其他进程的正常运行。网络安全厂

商 sonicwall最近的报告显示，即使在加密货币市场

趋于崩溃的情况下，2022年的挖矿恶意软件攻击仍

增长了 30%[2]。因此，挖矿恶意软件检测及防御是目

前网络安全领域的一个重要课题。

为了逃避检测以获得持续的收益，挖矿恶意软

件开发者注重挖矿恶意软件的隐蔽性和运行的持久

性，由此集成了诸多逃避检测的措施，如监控性能监

视工具、将自身伪装为系统文件、限制进程CPU（cen-

tral processing unit）利用率阈值等 [3-5]提升其隐蔽性的

手段，以及通过修改计划任务和启动项、创建守护进

程等增强其运行持久性的方法。知名挖矿恶意软件

H2Miner就采用了创建计划任务、将自身伪装为系统

文件等措施来逃避检测。为准确检测挖矿恶意软件，

基于机器学习的动态检测方法和流量检测方法成为

近年来研究的主流。但目前这两类方法或需要较长

的数据收集时间，或需要依赖人工的特征工程，导致

检测及时性不佳。为实施挖矿恶意软件的早期检测

以及时阻止其对系统的损害，目前的检测方法通常通

过缩短软件行为数据收集时长来达到提升检测及时

性的目的，但这会导致可用于方法分析的行为减少而

不易达到高准确率地检测挖矿恶意软件的目的[6]。因

此，如何在提升检测及时性的同时维持高的检测精度

是目前挖矿恶意软件检测领域的一个研究难点。

为此，本文从提升挖矿恶意软件早期检测准确

率的意图出发，探索利用挖矿恶意软件运行初期调用

的API（application programming interface）的操作类别

和调用API的DLL（dynamic link library）来提升检测

精度的可行性。本文提出了一种词嵌入方法AECD

（API embedding based on category and DLL）来丰富

软件的API词向量所表达的信息。此外，为了避免人

工的特征工程，本文选用了能保留API上下文关系且

结构简单、训练速度快的 TextCNN（text convolutional

neural network）算法 [7]来建立检测模型。结合AECD

词嵌入和TextCNN算法，本文提出了基于AECD词嵌

入的挖矿恶意软件早期检测方法CEDMA（cryptomin-

ing malware early detection method based on AECD

embedding）。与现有挖矿恶意软件检测方法相比，

CEDMA能够兼顾检测的及时性和准确率。本文的

主要贡献如下：

（1）从挖矿恶意软件调用API的DLL和API操作

类别两方面分析挖矿恶意软件和良性软件的行为，以

此为基础提出一种可丰富软件的API词向量所蕴含信

息的API词嵌入方法AECD，为构建基于AECD词嵌

入的挖矿恶意软件早期检测方法奠定了基础。

（2）提出一种挖矿恶意软件早期检测方法CEDMA。

CEDMA以软件在运行初期所调用的一定长度的API

序列为检测对象来获取高的检测及时性，使用AECD

词嵌入缓解挖矿恶意软件早期行为信息量不足的问

题，并使用具有结构简单特性的 TextCNN建立高效

的检测模型。

（3）利用涉及多种加密货币的多款挖矿恶意软

件以及多种类型的良性软件对 CEDMA进行实验测

试。实验结果表明 CEDMA能够使用软件在建立网

络连接前的API序列、DLL序列和API操作类别序列

实现对挖矿恶意软件样本的高准确率早期检测。

1 相关工作
近年来国内外研究人员提出了多种挖矿恶意软件

检测方法。本文研究属于动态检测方法范畴，现有挖

矿恶意软件动态检测方法可划分为基于主机的检测方

法、基于流量的检测方法以及早期检测方法三类。

1.1 基于主机的检测方法
基于主机的检测方法关注挖矿恶意软件在运行

时对系统硬件性能造成的影响、所调用的API序列等

在主机上的动态行为。基于主机的动态检测方法中

基于性能影响的检测方法易受同一硬件环境中其他

进程影响且移植性差。基于API序列的检测方法中，

Berecz等人 [8]选择与挖矿行为相关的 10个 API和 5

个动态链接库以及另外 5个 PE（portable executable）

AECD embedding and TextCNN (text convolutional neural network) to build a detection model to implement cryp-

tomining malware early detection. Experimental results show that when CEDMA takes the 3000 API sequence called

for the first time after the software runs as input, it can detect the known and unknown cryptomining malware samples

in the experiment with 98.21% and 96.76% accuracy values, respectively.

Key words: cryptomining malware; dynamic analysis; early detection; deep learning
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文件属性作为特征，使用机器学习建立检测模型。

Karn等人 [9]使用 n - gram模型从 8种挖矿恶意软件和

8个良性应用的持续 1 min的 API序列中提取特征，

并使用决策树等算法构建检测模型。动态检测方法

从样本的动态行为中提取能反映行为特性的特征集

合，该类方法在对抗混淆、加壳等逃逸技术上具有一

定优势，但缺点是需要较大的时间和性能开销，检测

及时性差。

11..22 基于流量的检测方法

基于流量的检测方法可以监控网络入口的流量，

易于部署且能覆盖监控网络内的所有设备。i Muñoz

等人 [10]通过分析正常流量与来自 5种挖矿恶意软件

的流量在通信行为上的不同，总结出 5个通信行为特

征，并使用机器学习算法构建检测模型。Caprolu等

人[11]将 3种开源挖矿客户端的流量与 3种良性软件的

流量在数据包的大小、间隔时间等方面进行比较以

总结出特征，然后结合机器学习建立检测模型。基

于流量的检测方法通常需要等待挖矿恶意软件建立

网络连接后才能实施检测，与基于主机的检测方法

相比有更大的检测延迟，且难以对抗应用了延迟数

据包发送、增加无用数据包、添加代理、数据包填充

等逃逸技术的挖矿恶意软件。

11..33 早期检测方法

挖矿恶意软件在运行时具有执行横向移动、组

建僵尸网络、窃取受害者的数据等的可能性，其挖矿

进程亦会极大地消耗系统的硬件资源并影响其他进

程的正常运行，因此实施对挖矿恶意软件的早期检测

对于及时阻止其对系统安全的损害具有重要意义。

曹传博等人[12]提出挖矿软件行为多样期的概念，所提

检测方法以样本建立网络连接前的行为作为检测对

象来实施挖矿恶意软件早期检测，在收集 4 s的API序

列时可在其实验集上获得 96.55%的 F1- score值。

Sun等人 [13]提出了一种挖矿软件早期流量的卷积特

征提取方法，该方法以 8种加密货币的挖矿程序为样

本，借助卷积函数从挖矿流量的前数个数据包构成

的包负载大小序列中提取特征，再使用机器学习建

立检测模型。以上方法通过缩短数据收集时间或减

少收集的数据量达到早期检测的目的，但由于所能用

于分析的数据量少，在检测准确率上相对传统基于主

机的检测方法和基于流量的检测方法不具有优势。

综上，目前基于主机的动态检测方法所需的数

据收集时间长而导致其检测及时性差。基于主机

的早期检测方法在检测准确率方面还存在较大的

提升空间。基于流量的早期检测方法需要等待样

本建立网络连接后才能实施检测。因此，为了在提

升挖矿恶意软件检测及时性的同时也获取高的检

测精度，本文以挖矿恶意软件的 API名称、API操作

类别、调用 API的 DLL作为分析对象，设计了一种

AECD词嵌入方法以更充分地描述挖矿恶意软件运

行初期的行为信息，并以此为基础构建挖矿恶意软

件早期检测方法。

22 挖矿恶意软件行为分析

22..11 挖矿恶意软件网络连接行为分析

为实施挖矿恶意软件早期检测，曹传博等人[12]提

出了挖矿软件行为多样期 BDP（behavioral diversity

period of cryptominer）的概念，以挖矿恶意软件建立

网络连接之前的行为作为早期检测的对象，并使用

socket/WSASocket在 API序列中定位建立网络连接

行为，同时设置了一个数据收集时间上限 4 s。本文

同样使用 BDP内的 API序列作为检测对象，但是试

图解决该文献方法存在的两个方面的问题：一是部

分挖矿恶意软件首次调用 socket/WSASocket的时间

相对较晚而使得对这部分软件的检测及时性较差。

二是部分挖矿恶意软件在开始运行后的短时间内即

调用了大量的API，所以该文献方法难以稳定地限制

挖矿恶意软件在其被检出前的操作数量。

软件在Windows系统中运行时会通过 DLL调

用 API来实现其功能，所以 DLL调用也能够在一定

程度上反映软件运行中的行为信息。本文将某个

DLL调用首个API的时刻作为首次调用该DLL的时

刻。由于挖矿恶意软件执行挖矿前需要通过 socket

连接矿池，所以本文推测 socket相关 DLL（ws2_32.

dll、wsock32.dll、mswsock.dll）会被挖矿恶意软件调

用，且存在 socket相关 DLL的首次调用时刻早于

socket相关 API（socket/WSASocket）的首次调用时

刻的情况。为了验证这一推测，收集了涵盖多种加

密货币类型的 100款挖矿恶意软件，在VMware创建

的Windows10虚拟机中收集各样本在其默认的进

程 CPU利用率阈值下运行 1 min（以样本开始执行

为起始时间）所产生的 API序列，并记录调用这些

API的 DLL序列。所收集样本的 socket相关 DLL

和 socket/WSASocket的首次调用时刻情况对比如

图 1所示。
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根据 socket相关 DLL和 socket/WSASocket的首

次调用时刻的前后关系可将所分析样本分为图 1中 4

种不同的情况，然后分别计算每种情况所属样本的

平均首次调用时刻（若样本在 60 s内未调用相应API

或DLL，则其首次调用时刻记为 60 s）。情况 1、情况 2

中 socket 相关 DLL 的首次调用时刻早于 socket/

WSASocket。其中情况 2表示样本在 1 min内未调用

socket/WSASocket，但是调用了 socket相关DLL。存在

少部分样本因缺少运行环境或矿池域名失效而未调

用 socket相关 DLL以及 socket/WSASocket，被归类

到情况 4。部分挖矿恶意软件首次调用的 socket/

WSASocket来自 PE文件自身而非 windows的 DLL，

这导致其 socket相关DLL的首次调用时刻较其调用

socket/WSASocket的时间略晚，如图 1情况 3所示。

综合来看，所有所分析样本的 socket相关 DLL的平

均首次调用时刻相比 socket/WSASocket的平均首次

调用时刻提前了约 4 s。由上述结果可知，若以软件

首次调用 socket/WSASocket和 socket相关DLL较早

的那个时刻来定位建立网络连接行为，在序列采集

时长上少于单独使用 socket/WSASocket来定位网络

连接行为的方法。

2.2 挖矿恶意软件DLL及API类别分析
调用 API的 DLL能够访问该 API，可以体现该

API所服务的任务类型，所以软件运行时的DLL调用

情况能一定程度反映其行为倾向。由 2.1节可知挖

矿恶意软件大多会调用 socket相关DLL，这与其连接

矿池的行为相对应。而除了网络连接之外，挖矿恶

意软件还存在诸如进程注入、系统监控、创建副本等

其他行为，与良性软件具有明显不同的行为倾向。

因此，本文推测挖矿恶意软件和良性软件在DLL调

用上具有明显区别。

为分析挖矿恶意软件运行初期的 DLL调用情

况，在Windows10虚拟机中收集 2.1节所分析样本在

各自默认的进程CPU利用率阈值下所产生的首个长

度为 3 000的API序列。为进行比较，也收集了来自

多种类型的 100款良性软件开始运行后所产生的首

个长度为 3 000的API序列。本文以调用这些API的

DLL序列来计算各DLL被各软件调用的频率。表 1

给出了挖矿恶意软件运行初期频繁调用的部分

DLL，频繁调用 cudart64_80.dll、cudart64_75.dll是因

为挖掘加密货币需要借助 CUDA（computer unified

device architecture）来实现高速的加密计算。

良性软件运行初期频繁调用的部分DLL如表 2

所示，其运行初期更倾向于调用与图形界面、系统框

架相关的DLL。为量化各DLL对于区分挖矿恶意软

件和良性软件的价值，本文基于各DLL在挖矿恶意

软件和良性软件中的调用频率，计算每个DLL的信

息增益 [14]并使用 IG-DLL（information gain of dynamic

link library）表示其值，计算方法见 3.2节。 IG-DLL

值越高表示该DLL对于区分挖矿恶意软件和良性软

件越重要，因此本文将 IG-DLL称为挖矿相关度。挖

矿恶意软件运行初期所调用的DLL中 IG-DLL值排

名前 10的 DLL名称如表 3所示，其中 self表示样本

自身。

图 1 挖矿恶意软件 socket相关DLL和API

首次调用时刻对比

Fig.1 Comparison of first call time of socket

related DLLs and APIs 表 1 挖矿恶意软件运行初期频繁调用的部分DLL

Table 1 Part of DLLs frequently called by cryptomining

malware in early stage of operation

挖矿恶意软件常用DLL

ulib.dll

cudart64_80.dll

cudart64_75.dll

cuda_djezo.dll

libcurl-4.dll

DLL功能描述

文件工具支持 DLL

CUDA相关

CUDA相关

CUDA相关

Windows系统相关

表2 良性软件运行初期频繁调用的部分DLL

Table 2 Part of DLLs frequently called by benign

software in early stage of operation

DLL名称

apphelp.dll

kernelbase.dll

comctl32.dll

user32.dll

msvcr90.dll

DLL功能描述

应用程序兼容性客户端库

控制系统的内存管理、数据的输入

输出操作和中断处理等

用户体验控件库

Windows用户界面相关程序接口

Visual C++运行库
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除 DLL之外，有研究指出 API所属的操作类别

可用于提升恶意软件的分类精度 [15]。不同的API根

据其功能可以归属为不同的操作类别，比如文件系

统操作、注册表操作、字符串操作、进程操作、内存操

作等。本文以 2.2节中所述的API序列为分析对象，

得到了挖矿恶意软件和良性软件运行初期平均调用

频率之差排名前 5的API操作类别，如表 4所示。表 4

显示相比于良性软件，挖矿恶意软件在运行初期会进

行更多的字符串和注册表操作。由于API名称未包含

这些操作类别所蕴含的软件行为类型信息，所以综合

API名称和其操作类别信息有助于提升检测精度。

综上，调用 API的 DLL的信息增益值（即 IG-

DLL值）可体现该DLL对于区分挖矿恶意软件的重

要程度，API的操作类别可以体现软件的软件行为

类型信息。因此，本文将综合调用 API的 DLL和

API操作类别来丰富软件 API序列所表达的信息，

以缓解可用于检测的挖矿恶意软件早期行为信息量

不足的问题。

33 CEDMA方法框架
基于第2章的分析，本文提出了CEDMA。CEDMA

包含如图 2所示的三个阶段：数据收集、AECD词嵌

入、训练和检测。在数据收集阶段，CEDMA收集样

本的 API名称、API操作类别以及调用 API的 DLL；

在AECD词嵌入阶段，CEDMA通过AECD词嵌入方

法得到 AECD词向量；在训练和检测阶段，CEDMA

基于样本的词向量来构建检测模型以及给出待测样

本的检测结果。下面分别进行详细介绍。

3.1 数据收集
本阶段 CEDMA会在受控环境中对训练样本运

表 3 挖矿恶意软件运行初期调用的具有

高 IG-DLL值的DLL

Table 3 DLLs with high IG-DLL values called by

cryptomining malware in early stage of operation

DLL名称

kernelbase.dll

self

user32.dll

kernel32.dll

apphelp.dll

ole32.dll

comctl32.dll

ntdll.dll

powrprof.dll

version.dll

IG-DLL值

0.627 5

0.451 9

0.438 1

0.423 9

0.358 9

0.236 0

0.232 6

0.211 7

0.198 1

0.182 8

表 4 不同类别软件运行初期调用API的

主要操作类别

Table 4 Main operational categories of API

called by different types of software in

early stage of operation 单位：%

API操作类别

Strings

String Manipulation

Registry

Errors

Loader

挖矿恶意软件

16.61

11.82

5.30

7.63

1.97

良性软件

9.83

7.53

1.29

3.73

0.87

图 2 CEDMA框架

Fig.2 CEDMA framework
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行时产生的API序列进行收集，并提取API的操作类

别和调用 API的 DLL，由此得到与 API序列长度相

同的DLL序列和API操作类别序列各一。对于训练

样本，本文参考文献[12]的方法，分别收集各挖矿恶

意软件样本分别在 25%、50%、75%、100%的进程CPU

利用率阈值下调用的API序列。

2.1节提到以时间上限（记为 T）作为数据收集阈

值的方法难以稳定地限制检出挖矿恶意软件前期的

操作数量。表 5统计了 2.1节所分析的挖矿恶意软件

的API序列，可以发现样本开始运行后前 T秒的API

序列长度大且随时间增长。表 6显示若以固定的API

序列长度来结束数据收集，挖矿恶意软件和良性软

件调用长度在 4 000以内的API序列所需时长通常很

少。因此，CEDMA以API序列长度为限（记为 L）来

收集数据，即当软件开始运行后其调用的API序列长

度首次到达某个阈值时停止收集。

综合 2.1节和本节的分析，CEDMA的数据收集

方法如下：若样本在开始运行后首次调用 socket相关

DLL（ws2_32.dll、wsock32.dll、mswsock.dll）或 socket/

WSASocket时其API序列长度不足 L，则在该首次调

用时刻结束API序列收集，不足L的部分用 0填充；若

样本在开始运行后产生的API序列长度达到 L时未

调用 socket相关DLL或 socket/WSASocket，则在长度

达到L时结束收集。

3.2 AECD词嵌入
在进行模型训练和检测之前，CEDMA需要将

API序列处理为可输入深度学习模型的数值形式，即

对API进行词嵌入。一方面，不同的API对检测具有

不同的价值，并非所有API都能使深度学习模型学习

到对分类有帮助的信息 [15]。另一方面，根据 2.2节的

分析，API名称未提供其操作类别信息以及挖矿相关

度代表的类别区分信息。因此，为了缓解仅使用API

名称进行早期检测而存在的行为信息不足问题，本

文提出词嵌入方法 AECD。CEDMA中 AECD的具

体步骤如图 3所示。

步骤 1 基于训练样本在数据收集阶段得到固

定长度的 API序列使用 word2vec算法 [16]来生成每

个 API的词向量。一个长度为 n 的 API序列中的

每个 API 均可映射为一个维度为 d 的向量 U j =
[u j,1,u j,2,⋯,u j,d],j ∈ 1,2,⋯,n，如图 3所示。本文将这一

步得到的词向量 U j 称为原生API词向量。这里使用

表 5 不同类别软件在不同T值下的

平均API序列长度

Table 5 Average length of API sequences called by

different types of software for different T values

T/s

1

2

3

4

挖矿恶意软件

9 055

15 841

20 635

24 212

良性软件

14 040

28 409

41 293

53 487

表 6 不同类别软件不同 L值的平均调用时间

Table 6 Average call time of different types

of software for different L values

API序列长度

1 000

2 000

3 000

4 000

挖矿恶意软件/s

0.204

0.311

0.412

0.507

良性软件/s

0.200

0.393

0.567

0.732

图 3 AECD词嵌入方法

Fig.3 AECD embedding method
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word2vec算法的原因是其生成词向量过程中会考虑

API的上下文调用关系，并且具有计算速度快、词向

量维度低的优点。

步骤 2 基于训练样本的API操作类别序列（其长

度与 API序列相同）使用 word2vec算法生成与原生

API词向量维度相同的API操作类别词向量，再将两者

拼接为一个词向量。一个长度为 n的API操作类别序

列中的每个API操作类别均可映射为一个维度为 d的
向量 V j =[v j,1,v j,2,⋯,v j,d],j ∈ 1,2,⋯,n，与原生API词向量

水平拼接后的结果为 Q j =[u j,1,u j,2,⋯,u j,d,v j,1,v j,2,⋯,v j,d],
j ∈ 1,2,⋯,n 。本文将这一步得到的维度为 2 × d 的词
向量 Q j 称为API语义词向量。如 2.2节的内容所述，

API的操作类别蕴含了API的软件行为类型信息，该

步骤可以增大属于相同操作类别的API之间的相似

度。比如同属注册表操作的 NtQueryValueKey和

NtOpenKeyEx，两者的原生API词向量的余弦相似度

为 0.754 1，而拼接操作类别词向量之后的API语义词

向量的相似度升高到 0.842 1。

步骤 3 基于训练样本的DLL调用频率计算 IG-

DLL，然后用其对API语义词向量加权。API语义词

向量虽然通过API操作类别丰富了软件行为类型信

息，但是仍然缺少对与挖矿恶意软件相关API的重点

关注。如 2.2节所述，IG-DLL能够体现API对区分挖

矿恶意软件和良性软件的贡献度。因此，AECD词嵌

入的最后一步为使用 IG-DLL对API语义词向量进行

加权。如图 3所示，根据调用API的DLL可以计算各

DLL的调用频率，进而基于各训练样本的DLL序列

（其长度与API序列相同）统计出各DLL的调用频率，

进而计算出各个DLL的 IG-DLL值。在训练阶段，一

个长度为 n的API序列所对应的DLL序列的 IG-DLL

值可以组成向量 [w1,w2,⋯,w i,⋯,wn],i ∈ 1,2,⋯,n。第
i个API的加权词向量可由 X i = w iQ i计算得到，X i即
为API序列中第 i个API的AECD词向量。

上述过程中各DLL的 IG-DLL值由式（1）计算得

到。其中，GR(X,DLLi)表示 DLLi 的 IG-DLL值，X表

示训练集且X中各样本由该样本各DLL的调用频率

表征，H(X) 表示 X的信息熵，H(X|DLLi) 表示使用
DLLi 的调用频率来对 X 进行样本划分的情况下 X

的信息熵。若 X 包含 k个不同的样本类别 classi, i =
1,2,⋯,k（本文中 k为 2，即X含有挖矿恶意软件与良

性软件两个类别），且 DLLi的调用频率在X中共有 s种

不同取值 num j(DLLi),j = 1,2,⋯, s ，则 H(X) 和 H(X|DLLi)
分别可以根据式（2）、（3）计算得到。其中，p( fc)表

示第 c类样本在X中的比例，p(num j(DLLi))表示 DLLi
的调用频率为 num j(DLLi) 的样本在 X 中的比例，

X|num j(DLLi)表示X中 DLLi的调用频率为 num j(DLLi)
的样本组成的集合。

GR(X,DLLi) =H(X) -H(X|DLLi) （1）

H(X) = -∑
c = 1

k

p( fc)lb p( fc) （2）

H(X|DLLi) =∑
j = 1

s

p(num j(DLLi))H(X|num j(DLLi)) （3）

由于调用某个 API的 DLL不固定，在 CEDMA

的检测阶段，AECD词嵌入需要分为两步完成：首先

针对待测API序列中的API及其操作类别，基于训练

阶段的词嵌入结果将每个API映射为维度为 2 × d的
API语义词向量，训练样本中未出现的API则映射为

全 0向量。然后根据调用待测 API序列中各 API的

DLL以及训练阶段计算的各DLL的 IG-DLL，将API

语义词向量加权为AECD词向量。综上，待测API序

列的每个API都映射为一个维度为 2 × d的AECD词

向量。

3.3 模型训练与检测
为训练一个可实施挖矿恶意软件与良性软件的

二分类的检测模型，需要先给每个训练样本赋上其

所属的类别标签——良性软件和挖矿恶意软件分别

标记为 0和 1。据此可以得到训练集 D tr(D tr ={(x1,y1),
(x2,y2),…,(xi,yi),…,(xm,ym)})，其中 yi ∈ { }0,1 ，xi 由第 i
个样本的AECD词向量表征，m为样本数量。

CEDMA使用TextCNN构建检测模型。TextCNN

是CNN（convolutional neural networks）用于文本分类

任务的一种变体[7]，其可以利用一个或多个一维滑动

窗口从序列数据中提取特征。一方面，CEDMA使用

TextCNN可以从AECD词向量中自动提取特征并实

施分类。另一方面，TextCNN模型结构简单、参数

少、训练速度快。

CEDMA使用的 TextCNN模型由输入层、卷积

层、池化层、全连接层和输出层组成。输入层将样本

运行记录（包含 API序列、API操作类别序列和DLL

序列）转化为AECD词向量输出。假设输入的样本运

行记录中API序列长度为 n，词向量维度为 d ，则经
输入层后为 n × d 的矩阵。若第 i个API的词向量表

示为 X i，则一个样本运行记录经过词嵌入后可以表

示为式（4）：

X(1:n) = X1⊕X2⊕…⊕Xn （4）

卷积层可以设置不同大小的卷积核。设卷积核

1089



Journal of Frontiers of Computer Science and Technology 计算机科学与探索 2024, 18(4)

的大小为 h × d，其中 h代表卷积核高度，即用于提取
特征的相邻API调用的数量，d 代表词向量的维度。
卷积核会在 X(1:n)上纵向滑动，通过式（5）计算特征值

ci。式中 w表示权重，b表示偏差值，f 表示激活函

数，X i:(i + h - 1)表示第 i到第 i + h - 1个API词向量构成

的矩阵。

ci = f (w ⋅X i:(i + h - 1) + b) （5）

如式（6）所示，一个卷积核通过纵向移动最终可

以获得 n - h + 1个特征值。
c =[c1,c2,…,cn - h + 1] （6）

池化层采取最大池化的方法，卷积结果 c的池化

过程可由式（7）表示：

c′ = max(c) （7）

所有池化后的特征值经过全连接层的拼接，可以

得到一个完整的向量。若有 p种卷积核，每种卷积核

的个数为 [q]，则全连接层输出的向量如式（8）所示：

z =[c1′,c2′,…,c(p × q)′] （8）

最后，输出层会输出一个长度为 s的向量，s为类别
数量。该向量的值表示预测样本属于各类别的概率。

在检测步骤，将采集的待检测软件的API序列、

API操作类别序列和DLL序列作为样本运行记录，然

后将其输入检测模型以判别该软件是良性软件还是

挖矿恶意软件。

4 实验及结果

4.1 实验环境与样本
样本的运行环境为Windows 10的VMware虚拟

机，Intel i7 10700F CPU 和 4 GB 内存。使用 API

Monitor收集样本运行记录。检测模型所在主机的配

置为AMD EPYC 7742 64-Core Processor，1 TB内存，

1块A100-SXM4-40 GB，模型采用 Python 3.8并使用

keras 2.4.3和 tensorflow-gpu 2.4.0库实现。CEDMA

在 TextCNN模型中设置了高度分别为 2、3、4、5的 4

种卷积核，分别用于 4个卷积层，然后加入了一个

Dropout层，最后采用 sigmoid函数输出标签概率。

TextCNN的超参数设置如下：学习率为0.000 1，Dropout

为 0.2，Epoch为 20，Batch size为 32。

实验样本包括 175个挖矿恶意软件样本和 700个

良性软件样本。挖矿恶意软件样本来源于 github项

目、virusshare（https://virusshare.com）、微步在线云沙箱

（https://s.threatbook.cn）、malware traffic analysis（https://

malware- traffic- analysis.net），以及 any.run（https://app.

any.run）。良性软件样本包括办公软件、安全杀毒、加

密软件等类别。良性软件样本来源于各软件的官网

或 360软件安装管家。

根据 3.1节所述的数据收集方法，每个挖矿恶意

软件样本收集 4条API序列（含API名称、API所属的

操作类别和调用API的DLL），而每个良性软件收集

1条API序列。为了验证CEDMA对已知和未知挖矿

恶意软件的检测能力，本文将收集的API序列划分为

表 7所示的训练集和两个测试集。首先，随机选取

140个挖矿恶意软件的各 2条API序列，再随机取 280

条良性软件的API序列，组成包含 560条API序列的

训练集。接着选取上述 140个挖矿恶意软件未被选

入训练集的另外 2条API序列，与随机选择的 280条

良性软件API序列共同组成包含 560条API序列的测

试集 1。之后将在训练集中未出现过的 35个挖矿恶

意软件的各 4条API序列和另外 140条良性软件API

序列组成包含 280条API序列的测试集 2。测试集 1

和测试集 2分别可以评估 CEDMA对设置了不同进

程CPU利用率阈值的已知挖矿恶意软件和未知挖矿

恶意软件的检测能力。

4.2 评估指标
为了对CEDMA的检测模型进行评估，本文使用

了多个恶意软件检测中常用的评估标准，包括准确

率（Accuracy），精确率（Precision），召回率（Recall）和

F1-score（F1）[9]。

4.3 实验结果
本节给出了CEDMA在测试集 1和测试集 2上的

表 7 实验中API序列的种类及数量

Table 7 Types and quantities of API

sequences in experiment

类别

办公软件

聊天通讯

安全杀毒

影音软件

游戏

压缩软件

压力测试

加密软件

其他应用

良性软件API序列数

挖矿恶意软件API序列数

API序列总数

训练集

42

31

16

48

32

16

5

20

70

280

280

560

测试集 1

42

31

16

48

32

16

5

20

70

280

280

560

测试集 2

21

15

8

24

16

8

4

10

34

140

140

280

总数

105

77

40

120

80

40

14

50

174

700

700

1 400
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检测结果。另外，也进行了CEDMA在不同API序列

长度L下的结果对比。

4.3.1 测试集 1的检测结果

CEDMA在不同 L 值下的检测结果如表 8所

示。表 8显示当 L在{1 000, 2 000, 3 000}内取值时，

CEDMA的检测结果随着L的增大而上升，但是当L取

值 4 000时检测结果下降。经分析，这是因为 L在

{1 000, 2 000, 3 000}内取值时，随着 L值的增大，大多

数挖矿恶意软件还未进入挖矿阶段，并在此期间执行

了越来越多的行为，其API序列中与字符串、注册表等

操作相关的API逐渐增多，与良性软件API序列区别明

显。而L=4 000时，一部分挖矿恶意软件建立网络连接

前的行为已经结束，使得API序列中与这些行为相关

的API比例下降，与良性软件API序列的相似度升高。

为评估不同词向量对CEDMA检测结果的影响，

将 L=3 000的 API序列生成的原生 API词向量、API

语义词向量和AECD词向量分别作为 TextCNN的输

入，在测试集 1上得到的检测结果如表 9所示。表 9

显示 TextCNN使用API语义词向量得到的检测精度

相比使用原生 API词向量有所提升；TextCNN使用

AECD词向量获得的Accuracy和 F1值则优于使用另

外两种词向量获得的值。

CEDMA与现有数种挖矿恶意软件检测方法在

测试集 1上的检测结果如表 10所示，其中平均检测

时间为一个方法检测单个测试样本所需的平均数据

收集时间、平均特征计算时间（生成特征向量所需时

间）及平均分类时间的总和，“—”表示无此项。

文献[8]未说明其方法的数据收集时间，对比实验

中其数据收集方法设置为与CEDMA相同，文献[9]方

法在实验中使用 API。在检测精度方面，表 10显示

CEDMA在测试集 1上获得的Accuracy和 F1值优于

其他几种方法。这是因为CEDMA所用的AECD词向

量融合的软件行为信息（API名称、API操作类别和调

用API的DLL）多于其他几种方法所用于检测的软件

行为信息。在检测及时性方面，CEDMA的平均检测

时间也优于其他几种方法。这主要因为CEDMA以挖

矿恶意软件建立网络连接前调用的较短长度的API序

列信息为检测对象，所需的软件行为采集时间少于另

外几种方法，且生成AECD词向量所需时间少以及所

用的TextCNN模型结构简单而具有很高的分类效率。

4.3.2 测试集 2的检测结果

CEDMA在不同L值下在测试集 2上得到的检测

结果如表 11所示。当L在{1 000, 2 000, 3 000, 4 000}

内取值时，表11显示CEDMA在L=3 000时获得的检测

结果最佳，其Accuracy和F1分别为 96.76%和 96.77%。

将 L = 3 000的API序列生成的三种词向量作为

TextCNN的输入，在测试集 2上得到的检测结果如表

12所示。表 12显示TextCNN使用AECD词向量获得

的Accuracy和 F1值在对比的三种词向量中最佳。

表 8 CEDMA使用不同 L值在测试集 1上的检测结果

Table 8 Detection results of CEDMA on test set 1

with different values of L

L

1 000

2 000

3 000

4 000

Accuracy

0.975 0

0.980 4

0.982 1

0.935 7

Recall

0.985 7

0.985 7

0.985 7

0.978 5

Precision

0.965 0

0.975 3

0.978 7

0.901 3

F1

0.975 3

0.980 5

0.982 2

0.938 3

表 9 CEDMA使用不同词向量在

测试集 1上的检测结果

Table 9 Detection results of CEDMA on

test set 1 using different word vectors

词向量

原生API词向量

API语义词向量

AECD词向量

Accuracy

0.958 9

0.980 4

0.982 1

Recall

0.960 7

0.985 7

0.985 7

Precision

0.957 3

0.975 3

0.978 7

F1

0.959 0

0.980 4

0.982 2

表 10 不同检测方法在测试集 1上的检测结果

Table 10 Detection results of different detection

methods on test set 1

方法

Berecz[8]

Karn[9]

CEDMB[12]

CEDMA

Accuracy

0.950 0

0.941 1

0.966 1

0.982 1

F1

0.951 0

0.941 8

0.966 3

0.982 2

平均检测时间/s

3.650 6

60.582 9

2.118 1

0.493 7

表 11 CEDMA使用不同 L值在测试集 2上的检测结果

Table 11 Detection results of CEDMA

on test set 2 with different values of L

L

1 000

2 000

3 000

4 000

Accuracy

0.921 4

0.928 6

0.967 6

0.907 1

Recall

0.907 1

0.928 6

0.964 3

0.864 3

Precision

0.933 8

0.928 6

0.971 2

0.945 3

F1

0.920 3

0.928 6

0.967 7

0.903 0
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表13给出了CEDMA与现有数种挖矿恶意软件检

测方法在测试集 2上的检测结果。表 13显示CEDMA

在测试集 2上得到的Accuracy和 F1值优于其他几种

方法，所需的平均检测时间也最少。这主要因为与

其他几种方法相比，CEDMA所用的AECD词向量融

合的软件行为信息最多，所需的软件行为采集时间

和特征向量生成时间之和最少。

4.4 实验总结

经上述实验验证，CEDMA能够以挖矿恶意软件

运行初期所执行的少量行为将其高准确率地检出。

表 9和表 12的实验结果表明，相比于使用 API词向

量，使用AECD词向量有助于获取更高的检测精度。

表 10和表 13的实验结果表明：与对比方法相比，

CEDMA在检测精度和及时性方面均具有优势，更适

用于挖矿恶意软件早期检测。

55 结束语

本文针对当前挖矿恶意软件早期阶段的API名

称所提供信息有限的问题，在挖矿恶意软件早期阶

段的API序列中融合了API名称、API操作类别和调

用 API的 DLL以更充分地描述其初期的行为信息，

进而提出了一种词嵌入方法ACED，并由此提出了挖

矿恶意软件早期检测方法CEDMA。实验结果表明，

CEDMA只需收集BDP内长度为 3 000的API序列即

可分别以 98.22%、96.77%的 F1值检测数据集中已知

和未知的挖矿恶意软件样本。相比目前其他挖矿恶

意软件检测方法，CEDMA在检测及时性和准确度上

均具有优势，在挖矿恶意软件早期检测领域具有应

用价值。在后续工作中，将继续探索如何准确检测

应用了逃逸技术的挖矿恶意软件。
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