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Abstract. The semantic Web service community develops efforts to bring
semantics to Web service descriptions and allow automatic discovery and
composition. However, there is no widespread adoption of such descriptions
yet, because semantically defining Web services is highly complicated and
costly. As a result, production Web services still rely on syntactic descriptions,
key-word based discovery and predefined compositions. Hence, more advanced
research on syntactic Web services is still ongoing. In this work we build
syntactic composition Web services networks with three well known similarity
metrics, namely Levenshtein, Jaro and Jaro-Winkler. We perform a
comparative study on the metrics performance by studying the topological
properties of networks built from a test collection of real-world descriptions. It
appears Jaro-Winkler finds more appropriate similarities and can be used at
higher thresholds. For lower thresholds, the Jaro metric would be preferable
because it detect less irrelevant relationships.

Keywords: Web services, Web services Composition, Interaction Networks,
Similarity Metrics, Flexible Matching.

1 Introduction

Web Services (WS) are autonomous software components that can be published,
discovered and invoked for remote use. For this purpose, their characteristics must be
made publicly available under the form of WS descriptions. Such a description file is
comparable to an interface defined in the context of object-oriented programming. It
lists the operations implemented by the WS. Currently, production WS use syntactic
descriptions expressed with the WS description language (WSDL) [1], which is a
W3C (World Wide Web Consortium) specification. Such descriptions basically
contain the names of the operations and their parameters names and data types.
Additionally, some lower level information regarding the network access to the WS is
present. WS were initially designed to interact with each other, in order to provide a
composition of WS able to offer higher level functionalities. Current production
discovery mechanisms support only keyword-based search in WS registries and no
form of inference or approximate match can be performed.

WS have rapidly emerged as important building blocks for business integration.
With their explosive growth, the discovery and composition processes have become
extremely important and challenging. Hence, advanced research comes from the
semantic WS community, which develops a lot of efforts to bring semantics to WS
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descriptions and to automate discovery and composition. Languages exist, such as
OWL-S [2], to provide semantic unambiguous and computer-interpretable
descriptions of WS. They rely on ontologies to support users and software agents to
discover, invoke and compose WS with certain properties. However, there is no
widespread adoption of such descriptions yet, because their definition is highly
complicated and costly, for two major reasons. First, although some tools have been
proposed for the annotation process, human intervention is still necessary. Second, the
use of ontologies raises the problem of ontology mapping which although widely
researched, is still not fully solved. To cope with this state of facts, research has also
been pursued, in parallel, on syntactic WS discovery and composition.

Works on syntactic discovery relies on comparing structured data such as
parameters types and names, or analyzing unstructured textual comments. Hence, in
[3], the authors provide a set of similarity assessment methods. WS Properties
described in WSDL are divided into four categories: lexical, attribute, interface and
QoS. Lexical similarity concerns textual properties such as the WS name or owner.
Attribute similarity estimates the similarity of properties with more supporting
domain knowledge, like for instance, the property indicating the type of media stream
a broadcast WS provides. Interface similarity focuses on the WS operations input and
output parameters, and evaluates the similarity of their names and data types. Qos
similarity assesses the similarity of the WS quality performance. A more recent trend
consists in taking advantage of the latent semantics. In this context, a method was
proposed to retrieve relevant WS based on keyword-based syntactical analysis, with
semantic concepts extracted from WSDL files [4]. In the first step, a set of WS is
retrieved with a keyword search and a subset is isolated by analyzing the syntactical
correlations between the query and the WS descriptions. The second step captures the
semantic concepts hidden behind the words in a query and the advertisements in the
WS, and compares them.

Works on syntactic composition encompasses a body of research, including the use
of networks to represent compositions within a set of WS. In [5], the input and output
parameters names are compared to build the network. To that end, the authors use a
strict matching (exact similarity), an approximate matching (cosine similarity) and a
semantic matching (WordNet similarity). The goal is to study how approximate and
semantic matching impact the network small-world and scale-free properties. In this
work, we propose to use three well-known approximate string similarity metrics, as
alternatives to build syntactic WS composition networks. Similarities between WS are
computed on the parameters names. Given a set of WS descriptions, we build several
networks for each metrics by making their threshold varying. Each network contains
all the interactions between the WS that have been computed on the basis of the
parameters similarities retrieved by the approximate matching. For each network we
compute a set of topological properties. We then analyze their evolution for each
metric, in function of the threshold value. This study enables us to assess which
metric and which threshold are the most suitable.

Our main contribution is to propose a flexible way to build WS composition
networks based on approximate matching functions. This approach allows to link
some semantically related WS that does not appear on WS composition networks
based on strict equality of the parameters names. We provide a thorough study
regarding the use of syntactic approximate similarity metrics on WS networks



topology. The results of our experimentations allow determining the suitability of the
metrics and the threshold range that maintains the false positive rate at an acceptable
level.

In section 2, we give some basic concepts regarding WS definition, description and
composition. Interaction networks are introduced in section 3 along with the
similarity metrics. Section 4 is dedicated to the network properties. In section 5 we
present and discuss our experimental results. Finally, in section 6 we highlight the
conclusions and limitations of, and explain how our work it can be extended.

2  Web Services

In this section we give a formal definition of WS, explain how it can be described
syntactically, and define WS composition.

A WS is a set of operations. An operation i represents a specific functionality,
described independently from its implementation for interoperability purposes. It can
be characterized by its input and output parameters, noted I; and O;, respectively. [
corresponds to the information required to invoke operation i, whereas O;is the
information provided by this operation. At the WS level, the set of input and output
parameters of a WS a are I, = U[; and O, = U 0;, respectively. Fig. 1 represents a
WS labeled a with two operations numbered 1 and 2, and their sets of input and
output parameters: I, ={a,b}, 0, ={d}, I, ={c}, 0,={e f}, I, ={ab,c},
0, =1{d,e f}.
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Fig. 1. Schematic representation of a WS «, with two operations 1 and 2 and six parameters a,
b,c,d,eandf.
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WS are either syntactically or semantically described. In this work, we are only
concerned by the syntactic description of WS, which relies on the WSDL language. A
WS is described by defining messages and operations under the form of an XML
document. A message encapsulates the data elements of an operation. Each message
consists in a set of input or output parameters. Each parameter has a name and a data
type. The type is generally defined using the XML schema definition language
(XSD), which makes it independent from any implementation.

WS composition addresses the situation when a request cannot be satisfied by any
available single atomic WS. In this case, it might be possible to fulfill the request by
combining some of the available WS, resulting in a so-called composite WS. Given a
request r with input parameters I,., desired output parameters O, and a set of available
WS, one needs to find a WS « such that I, 2 I,,, and O, € 0,. Finding a WS « that



can fulfill r alone is referred to as WS discovery. When it is impossible for a single
WS to fully satisfy 7, one needs to compose several WS {a, 8, ...,n}, so that for all
yefa,B,..,n}, Iyis required at a particular stage in the composition and (00, Uog U
..U 0y) 2 O,. This problem is referred to as WS composition. The composition thus
produces a specification of how to link the available WS to realize the request.

3 Interaction Networks

An interaction network constitutes a convenient way to represent a set of interacting
WS. It can be an object of study itself, and it can also be used to improve automated
WS composition. In this section, we describe what these networks are and how they
can be built.

Generally speaking, we define an interaction network as a directed graph whose
nodes correspond to interacting objects and links indicate the possibility for the
source nodes to act on the target nodes. In our specific case, a node represents a WS,
and a link is created from a node a towards a node S if and only if for each input
parameter in Ig, a similar output parameter exists in O,. In other words, the link exists
if and only if WS « can provide all the information requested to apply WS f. In Fig.
2, the left side represents a set of WS with their input and output parameters, whereas
the right side corresponds to the associated interaction network. Considering WS «a
and WS f, all the inputs of f, Iz = {f}, are included in the outputs of a, O, =
{d,e f}, ie. Ig © Oy. Hence, a is able to provide all the information needed to
interact with . Consequently, a link exists between a and B in the interaction
network. On the contrary, neither a nor § (0, = {d, e, f}, Og = {g, h}), provide all
the parameters required by y (I, = {d, g}), which is why there is no link pointing
towards y in the interaction network.
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Fig. 2. Example of a WS interaction network.

An interaction link between two WS therefore represents the possibility of
composing them. Determining if two parameters are similar is a complex task which
depends on how the notion of similarity is defined. This is implemented under the
form of the matching function through the use of similarity metrics.



Parameters similarity is performed on parameter names. A matching function f
takes two parameter names p; and p,, and determines their level of similarity. We use
an approximate matching in which two names are considered similar if the value of
the similarity function is above some threshold. The key characteristic of the syntactic
matching techniques is they interpret the input in function of its sole structure. Indeed,
string-based terminological techniques consider a term as a sequence of character.
These techniques are typically based on the following intuition: the more similar the
strings, the more likely they convey the same information.

We selected three variants of the extensively used edit distance: Levenshtein, Jaro
and Jaro-Winkler [6]. The edit distance is based on the number of insertions,
deletions, and substitutions of characters required to transform one compared string
into the other.

The Levenshtein metric is the basic edit distance function, which assigns a unit
cost to all edit operations. For example, the number of operations to transform both
strings kitten and sifting into one another is 3: 1) kitten (substitution of k with s)
sitten; 2) sitten (substitution of e with i) sittin; 3) sittin (insertion of g at the end)
sitting.

The Jaro metric takes into account typical spelling deviations between strings.
Consider two strings s; and s,. A character a in s; is “in common” with s, if the
same character a appears in about the place in s,. In equation 1, m is the number of
matching characters and t is the number of transpositions. A transposition is the
operation needed to permute two matching characters if they are not farther than the
distance expressed by equation 2.

Ll m  mot @
4 =3 (|s1| 521 T T )
lmax (|51|’ |52|)] -1 (2)
2

The Jaro-Winkler metric, equation 3, is an extension of the Jaro metric. It uses a
prefix scale p which gives more favorable ratings to strings that match from the
beginning for some prefix length .

d, = d; +(ip(1- d;)) 3)

The metrics score are normalized such that 0 equates to no similarity and 1 is an
exact match.

4 Network Properties

The degree of a node is the number of links connected to this node. Considered at the
level of the whole network, the degree is the basis of a number of measures. The
minimum and maximum degrees are the smallest and largest degrees in the whole
network, respectively. The average degree is the average of the degrees over all the



nodes. The degree correlation reveals the way nodes are related to their neighbors
according to their degree. It takes its value between —1 (perfectly disassortative) and
+1 (perfectly assortative). In assortative networks, nodes tend to connect with nodes
of similar degree. In disassortative networks, nodes with low degree are more likely
connected with highly connected ones [7].

The density of a network is the ratio of the number of existing links to the number
of possible links. It ranges from 0 (no link at all) to 1 (all possible links exist in the
network, i.e. it is completely connected). Density describes the general level of
connectedness in a network. A network is complete if all nodes are adjacent to each
other. The more nodes are connected, the greater the density [8].

Shortest paths play an important role in the transport and communication within a
network. Indeed, the geodesic provides an optimal path way for communication in a
network. It is useful to represent all the shortest path lengths of a network as a matrix
in which the entry is the length of the geodesic between two distinctive nodes. A
measure of the typical separation between two nodes in the network is given by the
average shortest path length, also known as average distance. It is defined as the
average number of steps along the shortest paths for all possible pairs of nodes [7].

In many real-world networks it is found that if a node A is connected to a node B,
and B is itself connected to another node C, then there is a high probability for A to be
also connected to C. This property is called transitivity (or clustering) and is formally
defined as the triangle density of the network. A triangle is a structure of three
completely connected nodes. The transitivity is the ratio of existing to possible
triangles in the considered network [9]. Its value ranges from 0 (the network does not
contain any triangle) to 1 (each link in the network is a part of a triangle). The higher
the transitivity is, the more probable it is to observe a link between two nodes
possessing a common neighbor.

5 Experiments

In those experiments, our goal is twofold. First we want to compare different metrics
in order to assess how the links creation is affected by the similarity between the
parameters in our interaction network. We would like to identify the best metric in
terms of suitability regarding the data features. Second we want to isolate a threshold
range within which the matching results are meaningful. By tracking the evolution of
the network links, we will be able to categorize the metrics and to determine an
acceptable threshold value. We use the previously mentioned complex network
properties to monitor this evolution. We start this section by describing our method.
We then give the results and their interpretation for each of the topological property
mentioned in section 4.

We analyzed the SAWSDL-TC1 collection of WS descriptions [10]. This test
collection provides 894 semantic WS descriptions written in SAWSDL, and
distributed over 7 thematic domains (education, medical care, food, travel,
communication, economy and weapon). It originates in the OWLS-TC2.2 collection,
which contains real-world WS descriptions retrieved from public IBM UDDI
registries, and semi-automatically transformed from WSDL to OWL-S. This
collection was subsequently re-sampled to increase its size, and converted to
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SAWSDL. We conducted experiments on the interaction networks extracted from
SAWSDL-TCI using the WS network extractor WS-NEXT [11]. For each metric, the
networks are built by varying the threshold from 0 to 1 with a 0.01 step.

Fig. 3 shows the behavior of the average degree versus the threshold for each
metric. First, we remark the behavior of the Jaro and the Jaro-Winkler curves are very
similar. This is in accordance with the fact the Jaro-Winkler metric is a variation of
the Jaro metric, as previously stated. Second, we observe the three curves have a
sigmoid shape, i.e. they are divided in three areas: two plateaus separated by a slope.
The first plateau corresponds to high average degrees and low threshold values. In
this area the metrics find a lot of similarities, allowing many links to be drawn. Then,
for small variations of the threshold, the average degree brutally decreases. The
second plateau corresponds to average degrees comparable with values obtained for a
threshold set at 1, and deserves a particular attention, because this threshold value
causes links to appear only in case of exact match. We observe that each curve
inflects at a different threshold value. The curves inflects at 0.4, 0.7 and 0.75 for
Levenshtein, Jaro and Jaro-Winkler, respectively. Those differences are related to the
number of similarities found by the metrics. With a threshold of 0.75, they retrieve
513, 1058 and 1737 similarities respectively.
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Fig. 3. Average degree in function of the metric threshold. Comparative curves of the
Levenshtein (green triangles), Jaro (red circles) and Jaro-Winkler (blue crosses) metrics.

To highlight the difference between the curves, we look at their meaningful part,
ranging from the inflexion point to the threshold value of 1. We calculated the
percentage of average degrees in addition to the average degree obtained with a
threshold of 1 for different threshold values. The results are gathered in Table 1. For a
threshold of 1, the average degree is 10 and the percentage reference is of course 0%.
In the threshold area ranging from the inflexion point to 1, the average degree
variation is always above 300%, which seems excessive. Nevertheless, this point
needs to be confirmed. Let us assume that above 20% of the minimum average



degree, results may be not acceptable (20% corresponding to an average degree of
12). From this postulate, the appropriate threshold is 0.7 for the Levenshtein metric,
0.88 for the Jaro metric. For the Jaro-Winkler metric, the percentage of 17.5 is
reached at a threshold of 0.91, then it jumps to 25.4 at the threshold of 0.9. Therefore,
we can assume that the threshold range that can be used is [0.7 ; 1] for Levenshtein,
[0.88; 1] for Jaro and [0.91 ; 1] for Jaro-Winkler.

Table 1. Proportional variation in average degree between the networks obtained for some
given thresholds and those resulting from the maximal threshold. For each metric, the smaller
considered threshold corresponds to the inflexion point.

Threshold 04 05 06 07 075 08 09 1
Levenshtein 510 260 90 20 0 0 0 0
Jaro - - - 370 130 60 10 O
Jaro-Winkler - - - - 350 140 50 O

To go deeper, one has to consider the qualitative aspects of the results. In other
words, we would like to know if the additional links are appropriate i.e. if they
correspond to parameters similarities having a semantic meaning. To that end, we
analyzed the parameters similarities computed by each metric from the 20% threshold
values and we estimated the false positives. As we can see in Table 2, the metrics can
be ordered according to their score: Jaro returns the least false positives, Levenshtein
stands between Jaro and Jaro-Winckler, which retrieves the most false positives. The
score of Jaro-Winkler can be explained by analyzing the parameters names. This
result is related to the fact this metric favors the existence of a common prefix
between two strings. Indeed, in those data, a lot of parameters names belonging to the
same domain start with the same beginning. The meaningful part of the parameter
stands at the end. As an example, let us mention the two parameter names Provide
MedicalFlightInformation DesiredDepartureAirport and Provide
MedicalFlightInformation DesiredDepartureDateTime. Those parameters
were considered as similar although the end parts have not the same meaning. We
find that Levenshtein and Jaro have a very similar behavior concerning the false
positives. Indeed, the first false positives that appear are names differing by a very
short but very meaningful sequence of characters. As an example, consider:
ProvideMedicalTransportInformation DesiredDepartureDateTime  and
ProvideNonMedicalTransportInformation DesiredDepartureDateTime.
The string Non gives a completely different meaning to both parameters, which
cannot be detected by the metrics.

Table 2. Parameters similarities from the 20% threshold values. 385 similarities are retrieved
at the 1 threshold.

Metric 20% threshold Number of retrieved Number of Percentage of
value similarities false positives  false positives

Levenshtein  0.70 626 127 20.3%

Jaro 0.88 495 53 10.7%

Jaro-Winkler 0.91 730 250 34.2%




To refine our conclusions on the best metric and the most appropriate threshold for
each metric, we decided to identify the threshold values leading to false positives.
With the Levenshtein, Jaro and Jaro-Winkler metric, we have no false positive at the
thresholds of 0.96, 0.98, and 0.99, respectively. Compared to the 385 appropriate
similarities retrieved with a threshold of 1, they find 4, 5 and 10 more appropriate
similarities, respectively. In Table 3, we gathered the additional similarities retrieved
by each metric. At the considered thresholds, it appears that Levenshtein finds some
similarities that neither Jaro nor Jaro-Winkler find. Jaro-Winkler retrieves all the
similarities found by Jaro and some additional ones. We also analyzed the average
degree value at those thresholds. The network extracted with Levensthein does not
present an average degree different from the one observed at a threshold of 1. Jaro
and Jaro-Winkler networks show an average degree which is 0.52% above the one
obtained for a threshold of 1. Hence, if the criterion is to retrieve 0% of false
positives, Jaro-Winkler is the most suitable metric.

Table 3. Additional appropriate similarities for each metric at the threshold of 0% of false
positives.

Metric Similarities
Threshold
Levenshtein GetPatientMedicalRecords PatientHealthInsuranceNu
0.96 mber ~
SeePatientMedicalRecords PatientHealthInsuranceNu
mber

_ GOVERNMENT-ORGANIZATION ~
GOVERNMENTORGANIZATION

_ GOVERMENTORGANIZATION ~ GOVERNMENTORGANIZATION
_LINGUISTICEXPRESSION ~ LINGUISTICEXPRESSIONI
Jaro _ GOVERNMENT-ORGANIZATION ~
0.98 _ GOVERNMENTORGANIZATION
_LINGUISTICEXPRESSION ~ LINGUISTICEXPRESSION1
_GEOGRAPHICAL-REGION ~ GEOGRAPHICAL-REGION1
_GEOGRAPHICAL-REGION ~ GEOGRAPHICAL-REGION2
_GEOPOLITICAL-ENTITY ~ GEOPOLITICAL-ENTITY1
Jaro-Winkler _ GOVERNMENT-ORGANIZATION ~
0.99 _ GOVERNMENTORGANIZATION
_GEOGRAPHICAL-REGION ~ GEOGRAPHICAL-REGION1
_GEOGRAPHICAL-REGION ~ GEOGRAPHICAL-REGION2
_GEOPOLITICAL-ENTITY ~ GEOPOLITICAL-ENTITY1
_LINGUISTICEXPRESSION ~ LINGUISTICEXPRESSIONI
_SCIENCE-FICTION-NOVEL ~ SCIENCEFICTIONNOVEL
_GEOGRAPHICAL-REGION1 ~ GEOGRAPHICAL-REGION2
_TIME-MEASURE ~ TIMEMEASURE
_LOCATION ~ LOCATION1
LOCATION ~ LOCATION2

The variations observed for the density are very similar to those discussed for the
average degree. At the threshold of 0, the density is rather high, with a value of 0.93.
Nevertheless, we do not reach a complete network whose density is equal to 1. This is
due to the interaction network definition, which implies that for a link to be drawn



from a WS to another, all the required parameters must be provided. At the threshold
of 1, the density drops to 0.006. At the inflexion points, the density for Levenshtein is
0.038, whereas it is 0.029 for both Jaro and Jaro-Winkler. The variations observed are
of the same order of magnitude than those observed for the average degree. For the
Levenshtein metric the variation is 533% while for both other metrics it reaches
383%. Considering a density value 20% above the density at the threshold of 1, which
is 0.0072, this density is reached at the following thresholds: 0.72 for Levenshtein,
0.89 for Jaro and 0.93 for Jaro-Winkler. The corresponding percentages of false
positives are 13.88%, 7.46% and 20.18%. Those values are comparable to the ones
obtained for the average degree. Considering the thresholds at which no false positive
is retrieved (0.96, 0.98 and 0.99), the corresponding densities are the same that the
density at the threshold of 1 for the three metrics. The density is a property which is
less sensible to small variations of the number of similarities than the average degree.
Hence, it does not allow concluding which metric is the best at those thresholds.
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Fig. 4. Maximum degree in function of the metric threshold. Comparative curves of the
Levenshtein (green triangles), Jaro (red circles) and Jaro-Winkler (blue crosses) metrics.

The maximum degree (cf. Fig. 4) globally follows the same trend than the average
degree and the density. At the threshold of 0 and on the first plateau, the maximum
degree is around 1510. At the threshold of 1, it falls to 123. Hence, the maximum
degree is roughly multiplied by 10. At the inflexion points, the maximum degree is
285, 277 and 291 for Levenshtein, Jaro and Jaro-Winkler respectively. The
variations are all of the same order of magnitude and smaller than the variations of the
average degree and the density. For Levenshtein, Jaro and Jaro-Winkler the variations
values are 131%, 125% and 137% respectively. Considering the maximum degree
20% above 123, which is 148, this value is approached within the threshold ranges
[0.66,0.67], [0.88,0.89], [0.90,0.91] for Levenshtein, Jaro and Jaro-Winkler



respectively. The corresponding maximum degrees are [193,123] for Levenshtein
and [153,123] for both Jaro and Jaro-Winkler. The corresponding percentages of
false positives are [28.43%,26.56%], [10.7%,7.46%)] and [38.5%,34.24%] .
Results are very similar to those obtained for the average degree and the metrics can
be ordered the same way. At the thresholds where no false positive is retrieved (0.96,
0.98 and 0.99), the maximum degree is not different from the value obtained with a
threshold of 1. This is due to the fact few new similarities are introduced in this case.
Hence, no conclusion can be given on which one of the three metric is the best.

As shown in Fig. 5, the curves of the minimum degree are also divided in three
areas: one high plateau and one low plateau separated by a slope. A the threshold of
0, the minimum degree is 744. At the threshold of 1, the minimum degree is 0. This
value corresponds to isolated nodes in the network. The inflexion points here appear
latter: at 0.06 for Levenshtein and at 0.4 for both Jaro and Jaro-Winkler. The
corresponding minimum degrees are 86 for Levenshtein and 37 for Jaro and Jaro-
Winkler. The thresholds at which the minimum degree starts to be different from 0
are 0.18 for Levenshtein with a value of 3, 0.58 for Jaro with a value of 2, and 0.59
for Jaro-Winkler with a value of 1. The minimum degree is not very sensible to the
variations of the number of similarities. Its value starts to increase at a threshold
where an important number of false positive have been introduced.

1000

¢ 4
@ l
k-] |
E o )}
3 HiH
E B 7| S
= |
=
b
Y
- distance=1 ‘i-
distanges2 e
© |+ distance=3"*
0.0 0.2 0.4 0.6 0.8 1.0
Threshold

Fig. 5. Minimum degree in function of the metric threshold. Comparative curves of the
Levenshtein (green triangles), Jaro (red circles) and Jaro-Winkler (blue crosses) metrics.

The transitivity curves (Fig. 6) globally show the same evolution than the ones of
the average degree, the maximum degree and the density. The transitivity at the
threshold of 0 almost reaches the value of 1. Indeed, the many links allow the
existence of numerous triangles. At the threshold of 1, the value falls to 0.032. At the
inflexion points, the transitivity values for Levenshtein, Jaro and Jaro-Winkler are
0.17, 0.14 and 0.16 respectively. In comparison with the transitivity at a threshold
level of 1, the variations are 431%, 337%, 400%. They are rather high and of the
same order than the ones observed for the average degree. Considering the transitivity
value 20% above the one at a threshold of 1, which is 0.0384, this value is reached at



the threshold of 0.74 for Levenshtein, 0.9 for Jaro and 0.96 for Jaro-Winkler. Those
thresholds are very close to the one for which there is no false positive. The
corresponding percentages of false positives are 12.54%, 6.76% and 7.26%. Hence,
for those threshold values, we can rank Jaro and Jaro-Winkler at the same level,
Levensthein being the least performing. Considering the thresholds at which no false
positive is retrieved, (0.96, 0.98 and 0.99), the corresponding transitivity are the
same than the transitivity at 1. For this reason and by the same way than for the
density and the maximum degree, no conclusion can be given on the metrics.
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Fig. 6. Transitivity in function of the metric threshold. Comparative curves of the Levenshtein
(green triangles), Jaro (red circles), and Jaro-Winkler (blue crosses) metrics.

The degree correlation curves are represented in Fig. 7. We can see that the Jaro
and the Jaro-Winkler curves are still similar. Nevertheless, the behavior of the three
curves is different from what we have observed previously. The degree correlation
variations are of lesser magnitude than the variations of the other metrics. For low
thresholds, curves start by a stable area in which the degree correlation value is 0.
This indicates that no correlation pattern emerges in this area. For high thresholds the
curves decrease until they reach a constant value (—0.246). This negative value
reveals a slight disassortative degree correlation pattern. Between those two extremes,
the curves exhibit a maximum value that can be related to the variations of the
minimum degree and to the maximum degree. Starting from a threshold value of 1 the
degree correlation remains constant until a threshold value of 0.83, 0.90 and 0.94 for
Lenvenshtein, Jaro and Jaro-Winkler respectively.
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Fig. 7. Degree correlation in function of the metric threshold. Comparative curves of the
Levenshtein (green triangles), Jaro (red circles) and Jaro-Winkler (blue crosses) metrics.

Fig. 8 shows the variation of the average distance according to the threshold. The
three curves follow the same trends and Jaro and Jaro-Winkler are still closely
similar. Nevertheless, the curves behavior is different from what we observed for the
other properties. For the three metrics, we observe that the average distance globally
increases with the threshold until it reaches a maximum value and then start to
decrease. The maximum is reached at the thresholds of 0.5 for Levenshtein, 0.78
Jaro and 0.82 Jaro-Winkler. The corresponding average distance values are 3.30,
4,51 and 5.00 respectively. Globally the average distance increases with the
threshold. For low threshold values the average distance is around 1 while for the
threshold of 1, networks have an average distance of 2.18. Indeed, it makes sense to
observe a greater average distance when the network contains less links. This means
that almost all the nodes are neighbors of each other. This is in accordance with the
results of the density which is not far from the value of 1 for small thresholds. We
remark that the curves start to increase as soon as isolated nodes appear. Indeed, the
average distance calculation is only performed on interconnected nodes. The
thresholds associated to the maximal average distance correspond to the inflexion
points in the maximum degree curves. The thresholds for which the average distance
stays stable correspond to the thresholds in the maximum degree curves for which the
final value of the maximum degree start to be reached. Hence from the observation of
the average distance, we can refine the conclusions from the maximum degree curves
by saying that the lower limit of acceptable thresholds is 0.75, 0.90 and 0.93 for
Levenshtein, Jaro and Jaro-Winkler respectively.
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Fig. 8. Average distance in function of the metric threshold. Comparative curves of the
Levenshtein (green triangles), Jaro (red circles) and Jaro-Winkler (blue crosses) metrics.

6 Conclusion

In this work, we studied different metrics used to build WS composition networks. To
that end we observed the evolution of some complex network topological properties.
Our goal was to determine the most appropriate metric for such an application as well
of the most appropriate threshold range to be associated to this metric. We used three
well known metrics, namely Levenshtein, Jaro and Jaro-Winkler, especially designed
to compute similarity relation between strings. The evolution of the networks from
high to low thresholds reflects a growth of the interactions between WS, and hence, of
potential compositions. New parameter similarities are revealed, and links are
consequently added to the network, along with the threshold increase. If one is
interested by a reasonable variation of the topological properties of the network as
compared to a threshold value of 1, it seems that the Jaro metric is the most
appropriate, as this metric introduces less false positives (inappropriate similarities)
than the others. The threshold range that can be associated to each metric is globally
[0.7,1], [0.89,1] and [0.91,1] for Levenshtein, Jaro and Jaro-Winkler, respectively.
We also examined the behavior of the metrics when no false positive is introduced
and new similarities are all semantically meaningful. In this case, Jaro-Winkler gives
the best results. Naturally the threshold ranges are lower in this case, and the
topological properties are very similar to the ones obtained with a threshold value of
1.

Globally, the use of the metrics to build composition networks is not very
satisfying. As the threshold decreases, the false positive rate becomes very quickly
prohibitive. This leads us to turn to an alternative approach. It consists in exploiting
the latent semantics in parameters name. To extend our work, we plan map the names
to ontological concepts with the use of some knowledge bases, such as WordNet [12]
or DBPedia [13]. Hence, we could provide a large panel on the studied network
properties according to the way similarities are computed to build the networks.
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