2009.05632v1 [cs.SE] 11 Sep 2020

arxXiv

A Principled Approach to GraphQL Query Cost Analysis

Alan Cha
IBM Research, USA
alan.chal@ibm.com

James C. Davis’
Purdue University, USA
davisjam@purdue.edu

ABSTRACT

The landscape of web APIs is evolving to meet new client require-
ments and to facilitate how providers fulfill them. A recent web API
model is GraphQL, which is both a query language and a runtime.
Using GraphQL, client queries express the data they want to retrieve
or mutate, and servers respond with exactly those data or changes.
GraphQL’s expressiveness is risky for service providers because
clients can succinctly request stupendous amounts of data, and re-
sponding to overly complex queries can be costly or disrupt service
availability. Recent empirical work has shown that many service
providers are at risk. Using traditional API management methods is
not sufficient, and practitioners lack principled means of estimating
and measuring the cost of the GraphQL queries they receive.

In this work, we present a linear-time GraphQL query analysis
that can measure the cost of a query without executing it. Our
approach can be applied in a separate API management layer and
used with arbitrary GraphQL backends. In contrast to existing static
approaches, our analysis supports common GraphQL conventions
that affect query cost, and our analysis is provably correct based
on our formal specification of GraphQL semantics.

We demonstrate the potential of our approach using a novel
GraphQL query-response corpus for two commercial GraphQL
APIs. Our query analysis consistently obtains upper cost bounds,
tight enough relative to the true response sizes to be actionable
for service providers. In contrast, existing static GraphQL query
analyses exhibit over-estimates and under-estimates because they
fail to support GraphQL conventions.

CCS CONCEPTS

« Security and privacy — Denial-of-service attacks; « Soft-
ware and its engineering — Domain specific languages.

KEYWORDS
GraphQL, algorithmic complexity attacks, static analysis

1 INTRODUCTION

Web APIs are the preferred approach to exchange information on
the internet. Requirements to satisfy new client interactions have
led to new web API models such as GraphQL [30], a data query
language. A GraphQL service provides a schema, defining the data
entities and relationships for which clients can query.

GraphQL has seen increasing adoption because it offers three
advantages over other web API paradigms. First, GraphQL reduces

“Most of the work performed while at IBM Research, USA.
Most of the work performed while at Virginia Tech.

Erik Wittern*
IBM, Germany
erik. wittern@ibm.com

Louis Mandel
IBM Research, USA
Imandel@us.ibm.com

Guillaume Baudart
IBM Research, USA
Guillaume.Baudart@ibm.com

Jim A. Laredo
IBM Research, USA
laredoj@us.ibm.com

network traffic and server processing because users can express
their data requirements in a single query [29]. Second, it simplifies
API maintenance and evolution by reducing the number of service
endpoints [37]. Third, GraphQL is strongly typed, facilitating tool-
ing including data mocking [12], query checking [8], and wrappers
for existing APIs [41]. These benefits have not been lost on service
providers [26], with adopters including GitHub [5] and Yelp [2].

However, GraphQL can be perilous for service providers. A worst-
case GraphQL query requires the server to perform an exponential
amount of work [34], with implications for execution cost, pricing
models, and denial-of-service [32]. This risk is not hypothetical —
a majority of GraphQL schemas expose service providers to the
risk of high-cost queries [40]. As practitioners know [1, 36, 38], the
fundamental problem for GraphQL API management is the lack of a
cheap, accurate way to estimate the cost of a query.

Existing dynamic and static cost estimates fall short (§2). Dy-
namic approaches are accurate but impractically expensive [27, 34],
relying on interaction with the backend service and assuming spe-
cialized backend functionality [27]. Current static approaches are
inaccurate and do not support GraphQL conventions [20, 23, 25].

We present the first provably correct static query cost analysis for
GraphQL. We begin with a novel formalization of GraphQL queries
and semantics (§3). After extending the formalization with simple
configuration information to capture common schema conventions,
we define two complexity metrics reflecting server and client costs
for a GraphQL query (§4). Then we show how to compute upper
bounds for a query’s cost according to these metrics (§5). Our
analysis takes linear time and space in the size of the query.

Our analysis is accurate and practical (§6). We studied 10,000
query-response pairs from two commercial GraphQL APIs. Unlike
existing analyses, our analysis obtains accurate cost bounds even
for pathological queries. With minimal configuration, our bounds
are tight enough to be actionable for service providers. Our analysis
is fast enough to be used in existing request-response flows.

This paper makes the following contributions:

e We give a novel formalization of GraphQL semantics (§3).

e We propose two GraphQL query complexity measures (§4) that
are used to estimate the cost of a query. We then prove a linear-
time static analysis to obtain an upper bound for these measures
on a given query (§5).

e We evaluate our analysis against two public GraphQL APIs and
show that it is practical, accurate, and fast (§6). We also identify
causes of over- and under-estimation in existing static analyses.

e We share the first GraphQL query-response corpus [31]: 10,000
unique query and response pairs from the GitHub and Yelp APIs.

Alan Cha, Erik Wittern, Guillaume Baudart, James C. Davis, Louis Mandel, and Jim A. Laredo

GraphQL API Gateway
’ Policy definition & ‘ —— .
GraphiQL » Prettify = History < Docs configuration DB
i policy, config. | —
query
auery { Oh snap! v query o) B
. N . —~ . 1 (if allowed) = e ‘1
topic (name: "javascript") { ,)) Policy enforcement |« H{API b
relatedTopics { Something, somewhere, has gone horribly, horribly wrong. | O o %
P If the problem persists, try refreshing your browser. o A @ © & -
relatedTopics { v z@ e =
relatedTopics { Contact Support — GitHub Status — @githubstatus response Static c,é\ Initial- ‘ introspection 0 ()] A
relatedTopics { LAY (if allowed) lysis (R ‘ et < n —
relatedTopics { anaAyS|s AL ‘ \ =
relatedTopics { Complexities V @ —_—
relatedTopics { Resolve complexity: 1,111,112 A < :\ Query inspection ‘
name Type complexity: 11,111,111 A inspection | —
IHHHE . Network gateway
GraphQL client

Figure 1: Proposed applications of our query analysis. The client’s malicious query requests an exponentially large result from
GitHub’s GraphQL API. At the time of our study, GitHub permitted the shown query, but halted its execution after it exceeded a
time limit. Using our techniques, client-side query inspection can provide feedback during composition (see Complexities inset).
Server-side policy enforcement can reject queries and update rate limits based on provider-defined policies. We disclosed this
denial of service vector to GitHub, and it has since been patched (§6.4.3).

We illustrate applications of our analysis by exploiting a flaw
in GitHub’s static analysis (Figure 1).! We issued an exponential-
time query to GitHub. GitHub’s analysis incorrectly estimated the
query’s cost, accepted it, and wasted resources until the evaluation
timed out. Our analysis can help service providers avoid this situ-
ation. Some large queries are accidental, and our measure of type
complexity would permit clients to understand the potential sizes
of responses before issuing queries, reducing accidental service and
network costs. Both type complexity and our measure of resolve
complexity would permit service providers to understand a query’s
potential execution cost. Using these metrics will allow service
providers to identify high-cost queries and respond appropriately.

2 BACKGROUND AND MOTIVATION

In this section, we motivate the need for GraphQL query cost anal-
ysis (§2.1) and then discuss existing query analyses (§2.2).

2.1 Motivation

Our work is motivated by two aspects of software engineering
practice: (1) the majority of real-world GraphQL schemas expose
service providers to high-cost queries, and (2) existing strategies
employed by service providers are inadequate.

High-complexity GraphQL schemas are common in practice. Har-
tig and Pérez showed that a GraphQL query can yield an exponential
amount of data in the size of the query [34]. Such a query requests
the nested retrieval of the same data, and is only possible if the
schema defines self-referential relationships (“loops of lists”), and
if the underlying data contains such relationships. Wittern et al.
extended their analysis to identify schemas with polynomial-sized
worst-case responses, and analyzed a corpus of GraphQL schemas
for these properties [40]. In their corpus, they found that over 80%
of the commercial or large-scale open-source schemas had expo-
nential worst-case behavior, and that under 40% of all schemas
guaranteed linear-time queries.

1GitHub’s API also has a runtime defense, so the risk to their service was minimal.

Many public GraphQL APIs do not document any query analysis.
We manually studied the documentation for the 30 public APIs
listed by APIs.guru, a community-maintained listing of GraphQL
APIs [15]. We used public APIs listed as of February 28, 2020;
other GraphQL APIs are unlisted or private [26]. Disturbingly, 25
APIs (83%) describe neither static nor dynamic query analysis to
manage access and prevent misuse. 22 APIs (73%) make no reference
to rate limiting or to preventing malicious or overly complex re-
quests. Three APIs (10%) perform rate limiting, but only by request
frequency, ignoring the wide range of query complexities.

A few APIs have incorporated customized query and/or response
analysis into their management approach. Five APIs (17%) describe
analyzing GraphQL queries to apply rate limiting based on the esti-
mated or actual cost of a query or response. GitHub [7], Shopify [17],
and Contentful [4] estimate the cost of queries before executing
them. Shopify and Yelp [19] update remaining rate limits by an-
alyzing responses, i.e., the actual data sent to clients. But these
approaches have shortcomings that are discussed in §6.4.

2.2 Existing GraphQL Query Cost Analyses

A GraphQL query cost analysis measures the cost of a query without
fully executing it. Service providers can use such an analysis to
avoid denial of service attacks, as well as for management purposes.
There are two styles of GraphQL query analysis: dynamic [34]
and static [20, 23, 25]. The dynamic analysis of [34] considers a
query in the context of the data graph on which it will be executed.
Through lightweight query resolution, it steps through a query
to determine the number of objects involved. This cost measure
is accurate but expensive to obtain, because it incurs additional
runtime load and potentially entails engineering costs [27].2
Static analyses [20, 23, 25] calculate the worst-case query cost
supposing a pathological data graph. Because a static analysis as-
sumes the worst, it can efficiently provide an upper bound on a
query’s cost without interacting with the backend. The speed and

2 In particular, their analysis repeatedly interacts with the GraphQL backend, and
assumes that the backend supports cheap queries for response size. This is plausible if
the backend is a traditional database, but GraphQL is backend agnostic (§3).

A Principled Approach to GraphQL Query Cost Analysis

generality of static query analysis makes this an attractive approach
for commercial GraphQL API providers.

Our static approach follows a similar paradigm as existing static
analyses but we differ in several ways: (1) We provide two dis-
tinct definitions of query complexity, which is used to measure
query cost; (2) Our analysis can be configured to handle common
schema conventions to produce better estimates; (3) We build our
analysis on formal GraphQL semantics and prove the correctness
of our query complexity estimates; and (4) We perform the first
evaluation of such an analysis on real-world APIs. Overall, our eval-
uation shows the benefits of a formal and configurable approach,
identifying shortcomings in existing static analyses.

3 A NOVEL GRAPHQL FORMALIZATION

In this section we introduce GraphQL schemas and queries. Then,
we give a novel formalization of the semantics of query execution
based on the GraphQL specification [3] and reference implemen-
tation [13]. Compared to Hartig and Pérez [34], our semantics is
more compact, closer to the concrete GraphQL syntax, and includes
the context object for GraphQL-convention-aware static analysis.

3.1 GraphQL Schemas and Queries

For a visual introduction to GraphQL queries, see Figure 2. On
the left is an excerpt of GitHub’s API’s schema. In the center is a
sample query requesting a topic named "graphql", the names of two
relatedTopics, the totalCount of stargazers, and the names of two
stargazers. The right side of the figure shows the server’s response.

A GraphQL schema defines the data types that clients can query,
as well as possible operations on that data. Types can be scalars (e.g.,
Int, String), enumerations, object types defined by the provider
(e.g., Topic), or lists (e.g., [Topic]). In addition, there are also input
types, used to define object types for arguments. Each field of an
object type is characterized by a name (e.g., relatedTopics) and
arguments used to constrain the matching data (e.g., first). All
schemas define a Query operation type, which contains fields that
form the top-level entry points for queries [11]. Schemas may also
define a Mutation operation type, which contains fields that allow
queries to create, update, or delete data, or a Subscription operation
type, which provides event-based functionality.

The syntax of a GraphQL query is as follows:>

q == label :field (args) (basic query)
| ...on type{q} (filter)
| qq (concatenation)
| label : field (args){q> (nesting)

A basic query, label : field (args), requests a specific field of an
object with a list of named arguments args = a1:v1, ... ,a: 0.
For example topic(name: "graphgl") in Figure 2 queries the topic
field with the argument name: "graphql". The label renames the
result of the query with an arbitrary name. In the GraphQL syntax,
label can be omitted if it matches the field, and the list of arguments
can be omitted if empty. A simple field is thus a valid query.

3We omit some “syntactic sugar” of GraphQL constructs. They can be expressed as
combinations of our kernel elements.

Inline fragments ...on type {q} filter a query ¢ on a type
condition, only executing query q for objects of the correct type,
e.g., ...on Starrable in Figure 2. A query can also concatenate
fields q; q2, or request a sub-field of an object via nesting with the
form label : field (args){q}. Before execution, GraphQL servers
validate incoming queries against their schema.

3.2 Query Execution

To support a schema, a GraphQL server must implement resolver
functions. Each field of each type in the schema corresponds to a
resolver in the GraphQL backend. The GraphQL runtime invokes
the resolvers for each field in the query, and returns a data object
that mirrors the shape of the query.

The evaluation of a query can be thought of as applying succes-
sive filters to a virtual data object that initially corresponds to the
complete data graph. These filters follow the structure of the query
and return only the relevant fields. For example, when executing
the query in Figure 2, given the Topic whose name is "graphql",
the resolver for field relatedTopics returns a list of Topics, and for
each of these Topics the resolver for name returns a String.

The indirection of resolver functions makes the semantics of
GraphQL agnostic to the storage of the data. The data object is an
access point, populated e.g., from a database or external service(s)
that a resolver contacts. A resolver must return a value of the appro-
priate type, but the origin of that value is up to the implementation.

Semantics. Formally, Figure 3 defines the semantics of the kernel
language as an inductive function over the query structure. The
formula [q](o, ctx) = o’ means that the evaluation of query g on
data object o with context ctx returns an object o’. The context
tracks information for use deeper in a nested query. In our simplified
semantics we track the type, field, and arguments of the parent.

Querying a single field [label : field (args)](o, ctx) calls a re-
solver function resolve(o, field, args, ctx) which returns the cor-
responding field in object 0. The response object contains a single
field label populated with this value. The interpetation the argu-
ments args in the resolver is not part of the semantics; it is left to
the service developers.

A fragment [...on type {q}](o, ctx) only evaluates the sub-
query q on objects of the correct type (typeof (o) returns the type
of its operand). In the example of Figure 2, the field stargazers is
only present in the response if the topic is a Starrable type.

Querying multiple fields [g1 g2] (o, ctx) merges the returned ob-
jects, collapsing repeated fields in the response into one.*

A nested query [label : field (args){q}](o, ctx) is evaluated in
two steps. First, resolve(o, field, args, cix) returns an object o’.
The second step depends on the type of o’. If o’ is a list [01, ...,05],
the returned object contains a field label whose value is the list ob-
tained by applying the sub-query q to the all the elements oy, . .., 0n
with a new context ctx” containing the type, field, and arguments list
of the parent. Otherwise, the returned object contains a field label
whose value is the object returned by applying the sub-query q
on 0’ in the new context ctx’. By convention the top-level field
of the response, which corresponds to the query resolver, has an
implicit label "data" (see e.g., the response in Figure 2).

‘merge(01,02) recursively merges the fields of 0; and o05.

schema { query: Query }
type Query { topic(name: String): Topic }
type Topic {
relatedTopics(first: Int): [Topic]
name: String
stargazers(after: String, last: Int):
StargazerConnection }

type StargazerConnection {
totalCount: Int
edges: [StargazerEdge]

Alan Cha, Erik Wittern, Guillaume Baudart, James C. Davis, Louis Mandel, and Jim A. Laredo

query {
topic(name: "graphgl") {
relatedTopics(first: 2) {
name
}
...on Starrable {
stargazers(last: 2, after: "Y3...") {
totalCount
edges { # Connections pattern
node { name }
cursor

{ "data": {
"topic": {
"relatedTopics": [
{”name”: ”api”},
{"name": "rest"}
1,

"stargazers": {
"totalCount": 1252,

"edges": [
{"node": {"name": "XXX"},
"cursor": "Y3V..."},

nodes: [User] } 3

type StargazerEdge { }r3r}

node: User
cursor: String }

type User { name: String }

{"node": {"name": "XXX"},
"cursor": "Y3V..."}

33}

Figure 2: A GraphQL schema (left) with a sample query that uses the connections pattern (center) and response (right).

[label : field (args)](o, ctx) = {label : resolve(o, field, args, ctx) }

_ | [ql(o, ctx) if typeof (o) = type
[...on type {q}](o, ctx) = 0 otherwise

[a1 g2](o, cix) = merge([g:1](o, ctx), [g2] (o, cix))

[label : field (args){q}](o, ctx) =
{label : [[q](o1, ctx), ..., [q](0n, ctx’)]1} if o’ =[oy,...,0,]
{label : [q](0’, ctx’)} otherwise
where o’ = resolve(o, field, args, ctx)
and ctx’ = {type : typeof (o), field: field, args : args}

Figure 3: Semantics of GraphQL.

4 QUERY COMPLEXITY

A GraphQL query describes the structure of the response data,
and also dictates the resolver functions that must be invoked to
satisfy it (which resolvers, in what order, and how many times). We
propose two complexity metrics intended to measure costs from
the perspectives of a GraphQL service provider and a client:

Resolve complexity reflects the server’s query execution cost.
Type complexity reflects the size of the data retrieved by a query.

GraphQL service providers will benefit from either measure,
e.g., leveraging them to inform load balancing, threat-prevention,
resolver resource allocation, or request pricing based on the ex-
ecution cost or response size. GraphQL clients will benefit from
understanding the type complexity of a query, which may affect
their contracts with GraphQL services and network providers, or
their caching policies.

Complexity metrics can be computed on either a query or its
response. For a query, in §5.2 we propose static analyses to estimate
resolve and type complexities before its execution given minimal
assumptions on the GraphQL server. For a response, resolve and
type complexity are determined similarly but in terms of the fields
and data in the response object.

The intuition behind our analysis is straightforward. A GraphQL
query describes the size and shape of the response. With an ap-
propriate formalization of GraphQL semantics, an upper bound

on resolve complexity and type complexity can be calculated us-
ing weighted recursive sums. But unless it accounts for common
GraphQL design practices, the resulting bound may mis-estimate
complexities. In §6.4 we show this problem in existing approaches.

In the remainder of this section, we describe two commonly-used
GraphQL pagination mechanisms. If a GraphQL schema and query
uses these mechanisms, either explicitly (§4.1) or implicitly (§4.2),
we can obtain a tighter and thus more useful complexity bound.
Research reported that both of these conventions are widely used
in real-world GraphQL schemas [40], so supporting them is also
important for practical purposes.

4.1 GraphQL Pagination Conventions

At the scale of commercial GraphQL APIs, queries for fields that
return lists of objects may have high complexity — e.g., consider the
(very large) cross product of all GitHub repositories and users. The
official GraphQL documentation recommends that schema develop-
ers bound response sizes through pagination, using slicing or the
connections pattern [10]. GraphQL does not specify semantics for
such arguments, so we describe the common convention followed
by commercial [2, 5, 18] and open-source [40] GraphQL APIs.

Resolvers can return lists of objects which can result in arbitrarily
large responses — bounded only by the size of the underlying data.
Slicing is a solution that uses limit arguments to bound the size of
the returned lists (e.g., relatedTopics(first: 2) in Figure 2).

The connections pattern introduces a layer of indirection for
more flexible pagination, using virtual Edge and Connection types [10,
16]. For example, in Figure 2-left the field stargazers returns a
single StargazerConnection, allowing access to the totalCount of
stargazers and the edges field, returning a list of StargazerEdges.
This pattern requires limit arguments to target children of a re-
turned object (e.g., stargazers(last: 2) in Figure 2-middle applies
to the field edges).

The size of a list returned by a resolver can thus depend on the
current arguments and the arguments of the parent stored in the
context. Ensuring that limit arguments actually bound the size of
the returned list is the responsibility of the server developers:

A Principled Approach to GraphQL Query Cost Analysis

Assumption 1. Ifthe arguments list (args) or the context (ctx) con-
tains a limit argument (arg: val) the list returned by the resolver
cannot be longer than the value of the argument (val), that is:

length(resolve(o, field, args, ctx)) < val.
If this assumption fails, it likely implies a backend error.

Pagination, not panacea. While slicing and the connections pat-
tern help to constrain the response size of a query and the number of
resolver functions that its execution invokes, these patterns cannot
prevent clients from formulating complex queries that may exceed
user rate limits or overload backend systems. Our pagination-aware
complexity analyses can statically identify such queries.

4.2 Configuration for Pagination Conventions

As we discuss in §6, ignoring slicing arguments or mis-handling
the connections pattern can lead to under- or over-estimation of a
query’s cost. Understanding pagination semantics is thus essential
for accurate static analysis of query complexity. Since GraphQL
pagination is a convention rather than a specification, we therefore
propose to complement GraphQL schemas with a configuration that
captures common pagination semantics. To unify this configuration
with our definitions of resolve and type complexity, we also include
weights representing resolver and type costs. Here is a sample
configuration for the schema from Figure 2:

resolvers: types:
"Topic.relatedTopics": Topic:
limitArguments: [first] typeWeight: 1
defaultLimit: 10 Stargazer:
resolverWeight: 1 typeWeight: 1

"Topic.stargazers":
limitArguments: [first, last]
limitedFields: [edges, nodes]
defaultLimit: 10
resolverWeight: 1

This configuration specifies pagination behavior for slicing and
the connections pattern. In this configuration, resolvers are iden-
tified by a string "type.field" (e.g., "Topic.relatedTopics"). Their
limit arguments are defined with the field 1imitArguments. For slic-
ing, the limit argument applies directly to the returned list (see
"Topic.relatedTopics"). For the connections pattern, the limit argu-
ment(s) apply to children of the returned object (see limitedFields
for "Topic.stargazers"). The defaultLimit field indicates the size
of the returned list if the resolver is called without limit arguments.
We must make a second assumption (using JavaScript dot and
bracket notation to access the fields of an object):

Assumption 2. If a resolver is called without limit arguments, the
returned list is no longer than the configuration c’s default limit.
length(resolve(o, field, args, ctx)) <
c.resolvers["type.field"].defaultLimit

In the following, limit(c, type, field, args, ctx) returns the max-

imum value of the limit arguments for the resolver "type.field"

if such arguments are present in the arguments list args or the

context ctx, and the default limit otherwise. If a resolver returns

unbounded lists, the default limit can be set to co, but we urge

service providers to always bound lists for their own protection.
From Assumptions 1 and 2, we have:

Property 1. Given a configuration c and a data object o of type t, if
the context ctx contains the information on the parent of o, we have:

length(resolve(o, field, args,ctx)) < limit(c,¢t, field,args,ctx).

Concise configuration. Researchers have reported that many
GraphQL schemas follow consistent naming conventions [40], so
we believe that regular expressions and wildcards are a natural way
to make a configuration more concise. For example, the expression
"/ .xEdge$/.nodes" can be used for configuring resolvers associated
with nodes fields within all types whose names end in Edge. Or, the
expression "User.*" can be used for configuring resolvers for all
fields within type User.

5 GRAPHQL QUERY COST ANALYSIS

In this section we formalize two query analyses to estimate the
type and resolve complexities of a query. The analyses are defined
as inductive functions over the structure of the query, mirroring
the formalization of the semantics presented in §3. We highlight
applications of these complexities in §6.4.

Like other static query cost analyses (§2.2), our analysis returns
upper bounds for the actual response costs. For example, if a query
asks for 10 Topics, our analysis will return 10 as a tight upper bound
on the response size. If there are only 3 Topics in the data graph,
our analysis will over-estimate the actual query cost.

5.1 Resolve and Type Complexity Analyses

As mentioned in §4, we propose two complexity metrics: resolve
complexity and type complexity. In this section, we formalize the
resolve complexity analysis and then explain how to adapt the
approach to compute the type complexity. We will work several
complexity examples, relying on the Wy o configuration: a resolver
weight of 1 for fields returning object and list of object and 0 for
all other fields and the top-level operation resolvers (i.e. query,
mutation, subscription), and a type weight of 1 for all objects (in-
cluding those returned in lists) and 0 for all other types and the
top-level operation types (i.e. Query, Mutation, Subscription).

Resolve Complexity. Resolve complexity is a measure of the execu-
tion costs of a query. Given a configuration c, the resolve complexity
of a response r: rex(r, ¢) is the sum of the weights of the resolvers
that are called to compute the response. Each resolver call populates
a field in the response. The resolve complexity of a response is thus
the sum of the weights of each field. With the Wy o configuration,
the resolve complexity of the response in Figure 2-right is 6: 1 topic,
1 relatedTopics, 1 stargazers, 1 edges, 2 nodes.

The query analysis presented in Figure 4 computes an estimate
grex of the resolve complexity of the response. Each call to a resolver
is abstracted by the corresponding weight, and the sizes of lists are
bounded using the 1imit function. 1imit uses the limit argument if
present; otherwise, it will use the default limit in the configuration.

The analysis is defined by induction over the structure of the
query and mirrors the semantics presented in Figure 3 with one ma-
jor difference: the complexity analysis operates solely on the types
defined in the schema starting from the top-level Query type. The
formula qrex(q, ¢, t, ctx) = x means that given a configuration c,
the estimated complexity of a query ¢ on a type t with a context ctx

Alan Cha, Erik Wittern, Guillaume Baudart, James C. Davis, Louis Mandel, and Jim A. Laredo

qrex (label : field (args), ¢, t, ctx) =
c.resolvers["t.field"].resolverWeight

if t = type

qrex(q, ¢, t, ctx)
0 otherwise

qrex(...on type {q}, ¢, t, ctx) = {

grex(qi gz, 6 B, ctx) = qrex(q, ¢ ¢, ctx) +qrex(qe, ¢ ¢, ctx)

qrex (label : field (args){q}, ¢ t, ctx) =
w+ I xqrex(q, ¢, t/, ctx”) if t[field] = [¢']
{ w +qrex(q, ¢ t. fleld, ctx’) otherwise
where w = c.resolvers["t.field"].resolverWeight
and [= limit(c,t, fleld, args, ctx)
and ctx’ = {type : t, field: field, args : args}

Figure 4: Resolve complexity analysis. The analysis operates
on the types defined in the schema starting from Query.

is x € N U {oo}. For example, using the Wj o configuration, the
resolve complexity of the query in Figure 2-middle is also 6.

Theorem 1. Given a configuration c, the analysis of Figure 4 always
returns an upper-bound of the resolve complexity of the response. For
any query q over a data object o, and using {} to denote the empty
initial context:

grex(q, ¢ Query, {3) > rex([q](o, {3), ¢)

ProoF. The theorem is proved by induction on the structure of
the query. The over-approximation has two causes. First, 1limit
returns an upper bound on the size of the returned list (Property 1).
If the underlying data is sparse, the list will not be full; the maximum
complexity will not be reached. Second, we express the complexity
of merge(o1,02) as the sum of the complexity of the two objects.
This is accurate if 01 and 02 share no properties, but if properties
overlap then the merge will remove redundant fields (cf. §3.2). O

Type Complexity. Type complexity is a measure of the size of the
response object. Given a configuration c, the type complexity of a
response object r: tcx(r, ¢) is the sum of the weights of the types
of all objects in the response. Using the W o configuration, the type
complexity of the response in Figure 2-right is 8: 1 Topic, 2 (related)
Topics, 1 StargazerConnection, 2 StargazerEdges, 2 Users.

Similar to our resolve complexity analysis grex (Figure 4), our
type complexity analysis bounds the response’s type complexity
without performing query execution. We call the estimated query
type complexity qtcx. To compute gtcx, we tweak the first and final
rules from the grex analysis:

(1) The call to a resolver is abstracted by the weight of the returned
type ¢’ = t[field].
qtcx(label : field (args), ¢, t, ctx) = c.types[t'].typeWeight.

(2) When a nested query returns a list (¢[field] = [t’]), the type

complexity must reflect the cost of instantiating every element.

Every element thus adds the weight of the returned type ¢’ to
the complexity.
qtex(label : field (args){q}, ¢, t, ctx) = I X (w + qtcx(q, ¢, ¢/, ctx’))
where w = c.types[t'].typeWeight.

With the Wi ¢ configuration, the type complexity of the query in
Figure 2 is also 8.

Theorem 2. Given a configuration c, the type complexity analysis
always returns an upper-bound of the type complexity of the response.
For any query q over a data object o, and using {} to denote the empty
initial context:

qtex(qgs ¢, Query, {3) = tex([q](o, {3), ¢)

The proof is similar to the proof of Theorem 1.

5.2 Time/Space Complexity of the Analyses

The type and resolve complexity analyses are computed in one
traversal of the query. The time complexity of both analyses is
thus O(n), where n is the size of the query as measured by the
number of derivations required to generate it from the grammar
of GraphQL. Both analyses need to track only the parent of each
sub-query during the traversal. This implies that the space required
to execute the analyses depends on the maximum nesting of the
query which is at worst n. The space complexity is thus in O(n).

We emphasize that these are static analyses - they do not need
to communicate with backends.

5.3 Mutations and Subscriptions

So far we have considered only GraphQL queries. GraphQL also
supports mutations to modify the exposed data and subscriptions for
event-based functionality [3]. Our resolve complexity approach also
applies to mutations, reflecting the execution cost of the mutation.
API providers can use resolve weights to reflect costly mutations
in resolve complexity calculations. However, our type complexity
approach only estimates the size of the returned object, ignoring
the amount of data modified along the way. Assuming the user pro-
vides the new data, computing the type complexity of arguments
passed to mutation resolvers may give a reasonable approximation.
We leave this for future work. Our analysis can also produce resolve
and type complexities for subscription queries. Policies around sub-
scriptions may differ, though. For rate-limiting, for example, the
API provider could reduce the remaining rates based on complex-
ities when a subscription is started, and replenish them once the
client unsubscribes.

6 EVALUATION

We have presented our query analysis and proved its accuracy. In
our evaluation we consider five questions:

RQ1: Can the analysis be applied to real-world GraphQL APIs, espe-
cially considering the required configuration?

RQ2: Does the analysis produce cost upper-bounds for queries to
such APIs?

RQ3: Are these bounds useful, i.e. close enough to the actual costs of
the queries for providers to respond based on the estimates?

RQ4: Is our analysis cheap enough for use in API management?

RQ5: How does our approach compare to other solutions?

Our analysis depends on a novel dataset (§6.1). We created the
first GraphQL query-response corpus for two reputable, publicly ac-
cessible GraphQL APIs: GitHub [5] and Yelp [2]. Table 1 summarizes
these APIs using the metrics from [40].

To answer RQ1, we discuss configuring our analysis for these
APIs (§6.2). To answer RQ2-RQ4, we analyzed the predicted and ac-
tual complexities in our query-response corpus (§6.3). For RQ5, we

A Principled Approach to GraphQL Query Cost Analysis

Table 1: Characteristics of the evaluated APIs.

SCHEMA GitHus YELP
Number of object types 245 25
Total fields on all object types 1,569 121
Lines of Code (LoC) 22,071 760
Pagination w. slicing arguments Yes Yes
Pagination w. connections pattern Yes Yes
CONFIGURATION GitHus YELP
Number of default limits 21 13
LoC (% of schema LoC) 50 (0.2%) 39 (5.1%)

compare our findings experimentally to open-source static analyses,
and qualitatively to closed-source commercial approaches (§6.4).

6.1 A GraphQL Query-Response Corpus

Answering our research questions requires a multi-API query-
response corpus. None existed so we created one. We automatically
generated queries for GitHub and Yelp, and collected 5, 000 unique
query-response pairs each from April 2019 to March 2020.

General approach. We developed and open-sourced a GraphQL
query generator [31]. Its input is a GraphQL schema and user-
supplied parameters. Following standard grammar-based input
generation techniques [33], it generates queries recursively and
randomly by building an abstract syntax tree and rendering it as
a GraphQL query string. The depth probability dictates the likeli-
hood of adding nested fields. The breadth probability controls the
likelihood of adding additional adjacent fields into each query level.

Providing Argument Values. The AST generated by this approach
includes argument variables that must be concretized. We populate
these values using a provider map that maps a GraphQL argument
to functions that generate valid values.

Queries for GitHub and Yelp. We tuned the query generation to
our experimental design and context. We used breadth and depth
probabilities of 0.5. For numeric arguments, we used normally dis-
tributed integer values with mean and variance of (5, 1.0) (GitHub)
and (7,2.0) (Yelp).” For enum arguments, we randomly chose a
valid enum value. For named arguments (e.g., GitHub projects, Yelp
restaurants), we randomly chose a valid entity, e.g., the 100 most-
starred GitHub repositories. For context-dependent arguments, we
used commonly-valid values, e.g., README.md as a GitHub filepath.

Ethically, because we are issuing queries against public APIs,
we omitted overly-complex queries and queries with side effects.
We issued queries with: (1) estimated type or resolve complexity
< 1,000; (2) nesting depth < 10; and (3) query, not mutation or
subscription operations.

Query realism. Our query generation algorithm yielded diverse
queries for each API. To assess their realism, we compared them
to example queries provided by each APIL Yelp did not provide
any examples, but GitHub’s documentation includes 24 example
queries [6]. We analyzed them using the Wj ¢ configuration (cf.
§5.1) to determine the size of a typical query. Only 14 could be
analyzed using the same GitHub schema version. Of these, all but

5Yelp has a maximum nesting depth. Larger values yielded complex, shallower queries.

one had a type complexity of 302 or less. Therefore, we used a type
complexity of < 300 to categorize typical queries.

6.2 ROQ1: Configuration

Our aim is a backend-agnostic query cost analysis. As prior work [27,
34] cannot be applied to estimate query cost for arbitrary GraphQL
servers, we first assess the feasibility of our approach.

Per §4.2, our analysis requires GraphQL API providers to con-
figure limit arguments, weights, and default limits. We found it
straightforward to configure both APIs. Our configurations are far
smaller than the corresponding schemas (Table 1).

Limit arguments. GitHub and Yelp uses consistent limit argu-
ments names (first and last for GitHub, limit for Yelp), which we
configured with regular expressions. GitHub has a few exceptional
limit arguments, such as limit on the Gist.files field, which we
configured with both strings and regular expressions. Following the
conventions of the connections pattern [16], we set all Connection
types to have the limited fields edges and nodes for GitHub. GitHub
also has a few fields that follow the slicing pattern, so we did not
set any limited fields for these. The Yelp API strictly follows the
slicing pattern, so no additional settings were required.

Weights. For simplicity, we used a Wy o configuration (cf. §5.1).
This decision permitted us to compare against the open-source
static analysis libraries, but may not reflect the actual costs for
GraphQL clients or service providers. For example, we set the type
weights for scalars and enums to 0, supposing that these fields are
paid for by the resolvers for the containing objects.

Default limits. We identified default limits for the 21 fields (GitHub)
and 13 fields (Yelp). These fields are unpaginated lists or lists that do
not require limit arguments. We determined these numbers using
API documentation and experimental queries.

6.3 RQ2-RQ4: Complexity Measurements

Using this configuration, we calculated type and resolve complexi-
ties for each query-response pair in the corpus. Figure 5 summarizes
the results for Yelp and GitHub using heat maps. Each heat map
shows the density of predictions for request/response complexity
cells. Cells above the diagonal are queries whose actual complexity
we over-estimated, cells below the diagonal are under-estimates.

6.3.1 RQ2: Upper Bounds. In Figure 5, all points lie on or above
the diagonal. In terms of our analysis, every query’s predicted com-
plexity is an upper bound on its actual complexity. This observation
is experimental evidence for the results theorized in §5.1.

As an additional note, the striations that can be seen in Figure 5b
are the result of fields with large default limits. Queries that utilize
these fields will have similar estimated complexities.

6.3.2 RQ3: Tight Upper Bounds. Answering RQ2, we found our
analysis computes upper bounds on the type and resolve complex-
ities of queries. Other researchers have suggested that these cost
bounds may be too far from the actual costs to be actionable [34].

Our data show that the bounds are tight enough for practical
purposes, and are as tight as possible with a static, data-agnostic
approach. Figure 5 indicates that our upper bound is close or equal
to the actual type and resolve complexities of many queries — this
can be seen in the high density of queries near the diagonals.

Alan Cha, Erik Wittern, Guillaume Baudart, James C. Davis, Louis Mandel, and Jim A. Laredo

(a) Yelp type complexities (b) Yelp resolve complexities

300 200
102
z 2z 102
x x
8] 8]
> >
- c
$ 150 P $ 100 P
T - 100 T - 10t
= e = -~
t — %
-
£ - £
/100% resp., 69% of preds. 100% resp., 100% of preds.
Y 10° 0 100
0 75 150 0 50 100

Actual (response) cxty Actual (response) cxty

(c) GitHub type complexities (d) GitHub resolve complexities

600 102 300

10?

Pred. (query) cxty
&
o
s

Pred. (query) cxty
&
o

" f’"
}9‘9::;., 99% of preds.

0 150 300 0 75 150
Actual (response) cxty Actual (response) cxty

99% resp., 99% of preds.

Figure 5: Actual (response) complexities and predicted
(query) complexities, using our analysis on the corpus. Each
figure has text indicating the percentage of responses that
are shown (the remainder exceed the x-axis), and the per-
centage of the corresponding predictions that are shown
(the remainder exceed the y-axis).

Table 2: Over-estimation of our type and resolve complexi-
ties. The first table summarizes our approach on all queries.
The second shows the results for “typical” queries, i.e., those
with type complexities of up to 300 (cf. §6.1).

YELp (5, 000) GrtHug (5, 000)

ALL QUERIES Resolve Type Resolve Type
Underestimation None None None None
No overestimation 60.1% 21.8% 54.7% 8.4%
Overestimation <25% 63.0% 26.1% 84.9% 60.3%
Overestimation <50% 66.7% 30.1% 92.2% 84.0%

YELP (3, 416) GrtHuUB (4, 703)

“TYPICAL” QUERIES Resolve Type Resolve Type
Underestimation None None None None
No overestimation 83.4% 31.9% 57.9% 9.0%
Overestimation <25% 85.3% 38.2% 88.3% 63.8%
Overestimation <50% 88.1% 44.1% 95.2% 87.3%

Our bounds are looser for more complex queries. This follows
intuition about the underlying graph: larger, more nested queries
may not be satisfiable by an API’s real data. Data sparsity leads
responses to be less complex than their worst-case potential. Table 2
quantifies this observation. It shows the share of queries for which
our predictions over-estimate the response complexity by <25% and
<50%. Over-estimation is less common for the subset of “typical”
queries whose estimated type complexity is < 300.

However, per the proofs in §5.2, our upper bounds are as tight
as possible without dynamic response size information. The over-
estimates for larger queries are due to data sparsity, not inaccuracy.
For example, consider this pathological query to GitHub’s API:

query {
organization (login: "nodejs") {
repository (name: "node") { issues (first: 100) { nodes {
repository { issues (first: 100) { nodes {
S 333N
This query cyclically requests the same repository and issues.
With two levels of nesting, the query complexities are 10, 203 (re-
solve) and 20, 202 (type). If the API data includes at least 100 issues,
the response complexities will match the query complexities.

6.3.3 RQ4: Performance. Beyond the functional correctness of our
analysis, we assessed its runtime cost to see if it can be incorporated
into existing request-response flows, e.g., in a GraphQL client or an
API gateway. We measured runtime cost on a 2017 MacBook Pro
(8-core Intel i7 processor, 16 GB of memory).

As predicted in §5.2, our analysis runs in linear time as a function
of the query and response size.® The median processing time was
3.0 ms for queries, and 1.1 ms for responses. Even the most complex
inputs were fairly cheap; 95% of the queries could be processed in
< 7.3 ms, and 95% of the responses in < 4 ms. The open-source
analyses we consider in §6.4 also appear to run in linear time.

6.4 RQ5: Comparison to Other Static Analyses

In this section we compare our approach to state-of-the-art static
GraphQL analyses (§2.2). To permit a fair comparison across differ-
ent notions of GraphQL query cost, we tried to answer two practical
bound questions for the GitHub API with each approach.

BQ1: How large might the response be?
BQ2: How many resolver functions might be invoked?

BQL1 is of interest to clients and service providers, who both pay
the cost of handling the response. Various interpretations of “large”
are possible, so we operationalized this as the number of distinct
objects (non-scalars) in the response. BQ2 is of interest to service
providers, who pay this cost when generating the response.

We configured and compared our analysis against three open-
source analyses experimentally, with results shown in Figure 6.
The static GraphQL analyses performed by corporations are not
publicly available, so we discuss them qualitatively instead.

6.4.1 Configuring our Analysis to Answer BQ1 and BQ2. Our mea-
sure of a query’s type complexity can answer BQ1. Using the Wy
configuration (cf. §5.1), the type complexity measures the maximum
number of objects that can appear in a response, i.e., response size.

Our measure of a query’s resolve complexity is suitable for an-
swering BQ2. We assume that the cost of a resolver for a scalar or an
enum field is paid for by some higher-level resolver. Thus, we again
configured our analysis for GitHub using the W ¢ configuration
from §5.1. The resolve complexity resulting from this configuration
will count each possible resolver function execution once.

®We define query size as the number of derivations required to generate the query
from the grammar presented in §3.1. It can be understood as the number of lines in
the query if fields, inline fragments, and closing brackets each claim their own line.

A Principled Approach to GraphQL Query Cost Analysis

(a) Our GitHub complexities
600

(b) libA’s GitHub complexities
600

102

300 >

Pred. response size
Pred. response size

99% resp., 99% of preds.

150
Actual response size

/',,r 99% resp., 55% of preds.
150
Actual response size

Pred. response size

(c) libB’s GitHub complexities
600

(d) 1ibC’s GitHub complexities
600

99% resp., 9% of preds. 99% resp., 99% of preds.

w
o
S
\

\

300 -

Pred. response size

150
Actual response size

0 150
Actual response size

Figure 6: BQ1: Actual and predicted response sizes based on type complexity, from our analysis and the libraries on the GitHub
data. libB and libC produce identical values under our configuration. All static approaches over-estimate due to data sparsity.
The libraries have sources of over-estimation beyond our own. libB and libC also under-estimate (cells below the diagonal).

6.4.2 Comparison to Open-Source Static Analyses. We selected
open-source libraries for comparison. We describe their approaches
in terms of our complexity measures, configure them to answer the
questions as best as possible, and discuss their shortcomings.

Library selection. We considered analyses that met three criteria:
(1) Existence: They were hosted on GitHub, discoverable via searches
on graphgl {static|cost|query} {cost|analysis|complexity};

(2) Relevance: They statically compute a query cost measure; and
(3) Quality: They had > 10 stars, a rough proxy for quality [28].
Three libraries met this criteria: libA [20], 1ibB [25], and libC [23].

Understanding their complexity measures. At a high level, each of
these libraries defines a cost measure in terms of the data returned
by each resolver function invoked to generate a response. Users
must specify the cost of the entity type that it returns, and a multi-
plier corresponding to the number of entities. These libraries then
compute a weighted recursive sum, much as we do. Problematically,
these libraries do not always permit users to specify the sizes of
lists, leading to over- and under-estimates. In terms of the analysis
from §5.1, the list field size [cannot always be obtained (see gtcx,
last rule above Theorem 2). We discuss the details below.

Configuring the libraries to answer BQ1. We summarize our ap-
proach here. Our artifact includes the configuration details [31].

libA: We set the cost of all objects to 1 and all other types to 0.
The library allows the maximum size of a list to be set. Therefore,
we set the maximum sizes of unpaginated lists using values identi-
fied in §6.2. Unfortunately, the library cannot use arguments and
consequently, cannot take advantage of pagination. To configure
paginated lists, we instead set their maximum sizes to GitHub’s
maximum list size, 100 [7].

libB: As with libA, we set the cost of objects to 1 and other
types to 0. We also leveraged 1ibB’s partial pagination support. We
configured it to use the limit arguments of paginated lists. However,
libB treats unpaginated lists are treated as a single (non-list) entity.
It also does not support the connections pattern.

1ibC: 1ibB and libC appear to be related. Their support for BQ1
is equivalent, and we configured them similarly.

Comparing outcomes on BQ1. Figure 6 illustrates the effectiveness
of each approach when answering BQ1. The same query-response
corpus was used in each case, and the response sizes were calculated
using the method discussed in §5. The variation is on the y-axis,
the predicted response size estimated from the query. As implied

by our proofs of correctness, our approach consistently provides
an upper bound on the actual response size (no under-estimation).

As mentioned, libA cannot use arguments as limits. Configuring
all paginated lists to have a maximum list size equal to GitHub’s
maximum list size resulted in significant over-estimation. Addition-
ally, this configuration caused in the striations in Figure 6b, which
lie at intervals of 100 (the maximum list size); queries fall into bands
based on the number of paginated lists they contain. In contrast to
the striations found in Figure 5b, these fields nest within each other,
allowing for repeated and regularly spaced stripes. To illustrate the
overestimation, about 81.2% of libA’s predictions were more than
double the actual response size. In contrast, 84% of our analysis’s
predictions over-estimate less than 50% (cf. Table 2). Furthemore,
the median over-estimation of our analysis (i.e. median error) is 19%,
whereas that of libA is 634%. The 90% percentile over-estimation of
our analysis is 66.0% and that of libA is 14,568.2%. As a result, our
analysis conclusively performs better than libA.

1ibB and libC both over-estimate and under-estimate. Because
they do not support default limits and treat unpaginated lists as
a single (non-list) entity, they are prone to under-estimation. The
under-estimation can compound geometrically when multiple un-
paginated lists are nested. About 64% of their predictions were
under-estimations. Additionally, because they do not support the
connections pattern style of pagination and do not properly utilize
limit arguments in these cases, they are prone to over-estimation.
In any case, because libB and 1ibC can under-estimate, they do not
reliably produce upper bounds, which is a problem in security criti-
cal contexts. In contrast, our analysis consistently produces upper
bounds and notably, tight upper bounds. Because our analysis is not
at risk of this security problem, our analysis also performs better
than 1ibB and libC.

Configuring the libraries to answer BQ2. We were unable to con-
figure these libraries to answer BQ2. Fundamentally, libA, 1ibB, and
libC measure costs in terms of the entities returned by the query,
not in terms of the resolvers used to obtain the results. Trying to ap-
ply the multipliers to count resolvers will instead inflate them. The
trouble is illuminated by our resolve complexity analysis (Figure 4):
in the first clause of the final rule, the resolver multiplier should be
used to account for the [uses of each child resolver, but the parent
should be counted just once. In contrast, when answering BQ1, the
type multiplier should be applied to both a field and its children.

Alan Cha, Erik Wittern, Guillaume Baudart, James C. Davis, Louis Mandel, and Jim A. Laredo

This finding highlights the novelty of our notion of resolve com-
plexity. We believe its ability to answer BQ2 also shows its utility.

6.4.3 Comparison to Closed-Source Analyses. GitHub and Yelp de-
scribe their analyses in enough detail for comparison. GitHub’s
analysis can approximate BQ1 and BQ2, while Yelp’s cannot.

GitHub. GitHub’s GraphQL API relies on two static analyses for
rate limiting and blocking overly complex queries prior to execut-
ing them [7]. Both analyses support pagination via the connections
pattern as described in §4.1. For BQ1, their node limit analysis dis-
regards types associated with the connections pattern.” We can
replicate this behavior with our analysis by setting the weights
of types associated with the connections pattern to 0 and 1 oth-
erwise. For BQ2, their call’s score analysis only counts resolvers
that return Connection types. We can also replicate this behavior
by setting a weight of 1 to these resolvers and 0 otherwise. In any
case, because GitHub’s metrics cannot be weighted, they cannot
distinguish between more or less costly types or resolvers.

GitHub’s focus on the connections pattern may have caused
them issues in the past. When our study began, GitHub shared a
shortcoming with libB and libC: it did not properly handle unpagi-
nated lists (which would not employ the connections pattern). We
demonstrated the failure of their approach in Figure 1. We reported
this possible denial of service vector to GitHub. They confirmed
the issue and have since patched their analysis.

Yelp. Yelp’s GraphQL API analysis has both static and dynamic
components. Statically, Yelp’s GraphQL API rejects queries with
more than four levels of nesting. This strategy bounds the complex-
ity of valid queries, but expensive queries can still be constructed
with this restriction using large nested lists. Dynamically, Yelp then
applies rate limits by executing queries and retroactively replenish-
ing the client’s remaining rate limits according to the complexity of
the response. It is therefore possible to significantly exceed Yelp’s
rate limits by submitting a complex query when a client has a
small quota remaining. Using our type complexity analysis, Yelp
could address this problem by rejecting queries whose estimated
complexities exceeded a client’s remaining rates.

7 DISCUSSION AND RELATED WORK

Configuration and applicability. Our experiments show that our
analysis is configurable to work with two real-world GraphQL
APIs. Applying our analysis was possible because it is static, i.e.,
it does not depend on any interaction with the GraphQL APIs
or other backend systems. This contrasts with dynamic analyses,
which depend on probing backends for list sizes [34]. Our analysis
is more broadly applicable, and can be deployed separately from the
GraphQL backend if desired, e.g., in API gateways (cf. §8). The static
approach carries greater risk of over-estimation, however, and API
providers may consider a hybrid approach similar to GitHub’s: a
static filter, then dynamic monitoring.

We have identified three strategies for managing over-estimation.
First, an unpaginated list field may produce responses with a wide
range of sizes, leading our approach to overestimate. Schema de-
signers may respond by paginating the list, which will bound the

7 A possible explanation: virtual constructs like Edge and Connection types may
not significantly increase the amount of effort to fulfill a query.

degree of overestimation. Second, in our tests we used the Wj o con-
figuration, which assigned all types and resolvers the same weights.
In contexts where different data and resolvers carry different costs,
schema designers can tune the configuration appropriately. Lastly,
service providers may resort to a hybrid static/dynamic system to
leverage the graph data at runtime. The design of such a system is
a topic for further research.

The value of formalization. Our formal analysis gives us provably
correct bounds, provided that list sizes can be obtained from an
analysis configuration. This contrasts with the more ad hoc ap-
proaches favored in the current generation of GraphQL analyses
used by practitioners. A formal approach ensured that we did not
miss “‘corner cases”, as in the unpaginated list entities missed by
libB, libC, and GitHub’s internal analysis. Although our formalisms
are not particularly complex, they guarantee the soundness and
correctness missing from the state of the art.

Data-driven software engineering. Our approach benefited from
an understanding of GraphQL as it is used in practice, specifically
the use of pagination and naming conventions. Although pagina-
tion is not part of the GraphQL specification [30], we found that
the GraphQL grey literature emphasized the importance of pagina-
tion. A recent empirical study of GraphQL schemas confirmed that
various pagination strategies are widely used by practitioners [40].
We therefore incorporated pagination into our formalization (viz.
that list sizes can be derived from the context object) and supported
both of the widely used pagination patterns in our configuration.
This decision differentiates our analysis from the state of the art,
enabling us to avoid common sources of cost under- and over-
estimation. In addition, the prevalence of naming conventions in
GraphQL schemas inspired our support for regular expressions,
which allowed our configuration answer BQ1 and BQ2 remarkably
concisely. In contrast, the libraries we used required us to manually
specify costs and multipliers for each of the (hundreds of) GitHub
schema elements — they did not scale well to real-world schemas.

Bug finding. One surprising application of our analysis was as
a bug finding tool. When we configured Yelp’s AP, we assumed
that limit arguments would be honored (Assumption 1, §4). In
early experiments we found that Yelp’s resolver functions for the
Query.reviews and Business.reviews fields ignore the limit argu-
ment. Yelp’s engineering team confirmed this to be a bug. This
interaction emphasized the validity of our assumptions.

Database Query Analyses. There has been significant work on
query cost estimation for database query languages to optimize
execution. Our analysis is related to the estimation of a database
query’s cardinality and cost [14]. However, typical SQL servers rou-
tinely optimize queries by reordering table accesses, which makes
static cost evaluation challenging [35]. In comparison, our analysis
takes advantage of the limited expressivity of GraphQL, and the in-
formation provided in the schema (e.g., via pagination mechanism)
to guarantee robust and precise upper-bounds before execution.

8 APPLICATION EXAMPLE: API GATEWAY

We designed our GraphQL query cost analysis as a building block for
a GraphQL API gateway that offers APl management for GraphQL
backends (Figure 1). We worked with IBM’s product division to
implement a GraphQL API gateway based on our ideas. Following

A Principled Approach to GraphQL Query Cost Analysis

Type Warnings (2) x

O
O A1 ouey

Query.accounts

This field returns unbound list of values with

Field composite type.

0o a accounts(limit: Int): [Account] T ——
1. Add to: Query.accounts
O A1 a @listsize(slicingArguments: ["imit"])
~ - ccount
| Name Apply
v O Day 2. Add to: Query.accounts

@listSize(assumedsize: 10)
Types per page: 10 v 1-9of 9 types
Apply all

Figure 7: Screenshot of the configuration GUI in IBM’s Dat-
aPower API gateway. The warnings indicate incomplete con-
figuration and make recommendations.

patterns for API gateways for REST-like APIs [21, 22, 24], this gate-
way is backend agnostic, made possible by our data- and backend-
independent query cost analysis. This gateway was incorporated
into v10.0.0 of IBM’s API Connect and DataPower products [39].
A weakness of our approach is the need for configuration. Dur-
ing productization we explored two ways to support this task: a
graphical user interface (GUI) and automatic recommendations.
The gateway automatically ingests the backend’s schema using
introspection [9]. Users can then configure using the GUI depicted
in Figure 7. They can manually configure fields with weights, limit
arguments, and/or default limits, either one at a time or bulk-apply
to all types/fields matching a search. To mitigate the security risks
of schemas with nested structures, the GUI automatically identifies
some problematic fields and proposes an appropriate configuration
based on schema conventions. For example, it flags fields that return
lists and infers possible configurations based on type information.

9 THREATS TO VALIDITY

Construct validity. Our study does not face significant threats to
construct validity. We believe our definitions of type complexity and
resolve complexity are useful. We do not rely on proxy measures,
but rather measure these complexities directly from real queries.

Internal validity. These threats come from configuration and
query realism. In our evaluation, we created configurations for
the GitHub and Yelp APIs. Errors would affect the accuracy of our
bounds. Our evaluation showed that we did not make errors leading
to under-estimation, but we may have done so for over-estimation.

Although RQ2 showed that our analysis produces upper bounds,
in RQ3 our conclusions about the practicality of our bounds rely on
the realism of our query-response corpus. Our evaluation is based

on randomly generated queries, parameterized as described in §6.1.
Some of our queries used popular projects, which are more likely to
have associated data (decreasing over-estimates from data sparsity).
Other queries lacked contextual knowledge and may result in “un-
natural” queries unlikely to be filled with data. To avoid harming
the public API providers, we bounded the complexity of the queries

we issued, and this may have skewed our queries to be smaller than
realistic queries. We plan to pursue a more realistic set of queries,

e.g., obtained through collaboration with a GraphQL API provider
or by mining queries from open-source software.

External validity. Our work makes assumptions about the prop-
erties of GraphQL schemas and backend implementations that may
not hold for all GraphQL API providers. For example, the complex-
ity calculations depend on the presence of slicing arguments in
queries, on resolver function implementations to enforce these lim-
its, and on a proper configuration. By relying on default limits (§4.2),
we enable our analysis to function even if slicing arguments are
not enforced in (parts of) a schema. We demonstrated that proper
configuration is possible even when treating the backend as a grey
box, as we did when evaluating on the GitHub and Yelp APIs (§6.2).

10 CONCLUSION

GraphQL is an emerging web API model. Its flexibility can benefit
clients, servers, and network operators. But its flexibility is also
a threat: GraphQL queries can be exponentially complex, with
implications for service providers including rate limiting and denial
of service. The fundamental requirement for service providers is a
cheap, accurate way to estimate the cost of a query.

We showed in our evaluation that existing ad hoc approaches
are liable to both over-estimates and under-estimates. We proposed
instead a principled approach to address this challenge. Grounded
in a formalization of GraphQL semantics, in this work we presented
the first provably-correct static query cost analyses. With proper
configuration, our analysis offers tight upper bounds, low runtime
overhead, and independence from backend implementation details.
We accompany our work with the first GraphQL query-response
corpus to support future research.

REPRODUCIBILITY

An artifact containing the GraphQL query generator, the query-
response corpuses, library configurations, and corpus measure-
ments can be found here: https://zenodo.org/record/4023299. Insti-
tutional policy precludes sharing our analysis prototype.

ACKNOWLEDGMENTS

The authors are grateful to the reviewers and to A. Kazerouni for
their helpful feedback. We thank the IBM API Connect and Dat-
aPower teams for working with us on the GraphQL API Gateway.

https://zenodo.org/record/4023299

Alan Cha, Erik Wittern, Guillaume Baudart, James C. Davis, Louis Mandel, and Jim A. Laredo

REFERENCES

(1]

2016. How do you prevent nested attack on GraphQL/Apollo server?
https://web.archive.org/web/20200910231657/https://stackoverflow.com/
questions/37337466/how-do-you-prevent-nested-attack-on-graphql-apollo-
server/37338465

2017. Yelp - Introducing Yelp’s Local Graph. https://web.archive.org/web/
20200910231907/https://engineeringblog.yelp.com/2017/05/introducing-yelps-
local-graph.html

2018. GraphQL Specification. https://graphql.org/graphgl-spec/

2019. Contentful — Query complexity limits. https://www.contentful.com/
developers/docs/references/graphql/#/introduction/api- rate-limits

2019. GitHub - GraphQL API v4. https://developer.github.com/v4/

2019. GitHub — GraphQL Example Queries. https://github.com/github/platform-
samples/tree/master/graphql/queri

2019. GitHub GraphQL API v4: GraphQL resource limitations.
//developer.github.com/v4/guides/resource-limitations/

2019. GraphiQL - An in-browser IDE for exploring GraphQL. https://github.com/
graphql/graphiql

2019. GraphQL Docs: Introspection. https://graphgl.org/learn/introspection/
2019. GraphQL Docs: Pagination. http://graphql.org/learn/pagination/

2019. GraphQL Docs: The Query and Mutation types. https://graphgl.org/learn/
schema/#the-query-and-mutation-types

2019. GraphQL Faker. https://github.com/APIs-guru/graphql-faker

2019. GraphQL.js — JavaScript reference implementation for GraphQL. https:
//github.com/graphgl/graphql-js

2019. Oracle Database Documentation. https://docs.oracle.com/database
2019. Public GraphQL APIs. https://github.com/APIs-guru/graphql-apis
2019. Relay - Pagination Specification. https://facebook.github.io/relay/
graphgql/connections.htm

2019. Shopify - GraphQL Admin API rate limits. https://shopify.dev/concepts/
about-apis/rate-limits#graphql-admin-api-rate-limits

2019. Shopify — Shopify Storefront API. https://shopify.dev/docs/storefront-api
2019. Yelp - GraphQL API Points-Based Daily Limit. https://www.yelp.com/
developers/graphql/guides/ratejimiting

2020. 4Catalyzer/graphgl-validation-complexity: Query complexity validation
for GraphQL.js. https://github.com/4Catalyzer/graphql-validation-complexity
2020. Google Apigee. https://cloud.google.com/apigee/

2020. IBM API Connect. https://www.ibm.com/cloud/api-connect
2020. pabru/graphgl-cost-analysis: A Graphql query cost analyzer.
//github.com/pa-bru/graphql-cost-analysis

2020. RedHat 3Scale. https://www.3scale.net/

2020. slicknode/graphgl-query-complexity: GraphQL query complexity analysis
and validation for graphgl-js. https://github.com/slicknode/graphgl-query-
complexity

2020. Who's using GraphQL? http://graphgl.org/users

Tim Andersson. 2018. Result size calculation for Facebook’s GraphQL query
language. B.S. Thesis. http://www.diva-portal.org/smash/get/diva2:1237221/

https:

https:

[28]

[29]

[30]

(31]

(32]

(33]

(34]

[35]

[36]

[37]

(38]

(391

[40]

[41]

FULLTEXTO1.pdf

Hudson Borges and Marco Tulio Valente. 2018. What’s in a GitHub star? under-
standing repository starring practices in a social coding platform. , 112-129 pages.
Gleison Brito, Thais Mombach, and Marco Tulio Valente. 2019. Migrating to
GraphQL: A Practical Assessment. In 2019 IEEE 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 140-150. https:
//doi.org/10.1109/SANER.2019.8667986

Lee Byron. 2015. GraphQL: A data query language. https:
//web.archive.org/web/20200910232048/https://engineering.fb.com/core-
data/graphql-a-data-query-language/

Alan Cha, Erik Wittern, Guillaume Baudart, James C. Davis, Louis Mandel, and
Jim A. Laredo. 2020. A Principled Approach to GraphQL Query Cost Analysis
Research Paper Artifact. https://doi.org/10.5281/zenodo.4023299

Scott A. Crosby and Dan S. Wallach. 2003. Denial of Service via Algorithmic
Complexity Attacks. In Proceedings of the 12th Conference on USENIX Security
Symposium - Volume 12 (Washington, DC) (SSYM’03). USENIX Association, 29—
44.

Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. 2008. Grammar-based
whitebox fuzzing. In Proceedings of the 29th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. 206-215. https://doi.org/10.1145/
1375581.1375607

Olaf Hartig and Jorge Pérez. 2018. Semantics and Complexity of GraphQL. In Pro-
ceedings of the 2018 World Wide Web Conference (Lyon, France) (WWW ’18). Inter-
national World Wide Web Conferences Steering Committee, Republic and Canton
of Geneva, Switzerland, 1155-1164. https://doi.org/10.1145/3178876.3186014
Jiexing Li, Arnd Christian K6nig, Vivek R. Narasayya, and Surajit Chaudhuri.
2012. , 1555-1566 pages.

Arnaud Rinquin. 2017. Avoiding n+1 requests in GraphQL, including
within subscriptions. https://web.archive.org/web/20200910232552/https:
//medium.com/slite/avoiding-n- 1-requests-in-graphql-including-within-
subscriptions-f9d7867a257d

Nick Shrock. 2015. GraphQL Introduction. https://web.archive.org/
web/20200414211542/https://reactjs.org/blog/2015/05/01/graphql-
introduction.html

Max Stoiber. 2018. Securing Your GraphQL API from Malicious Queries. https:
//web.archive.org/web/20200910232751/https://www.apollographql.com/
blog/securing-your-graphql-api-from-malicious-queries-16130a324a6b/

Rob Thelen. 2020. API Connect is making GraphQL safer for the enterprise.
https://web.archive.org/web/20200910232932/https://community.ibm.com/
community/user/imwuc/blogs/rob- thelen1/2020/06/16/api- connect-is-making-
graphgql-safer-for-the-enterp

Erik Wittern, Alan Cha, James C. Davis, Guillaume Baudart, and Louis Mandel.
2019. An Empirical Study of GraphQL Schemas. In Proceedings of the 17th
International Conference on Service-Oriented Computing (ICSOC), Vol. 11895.
Erik Wittern, Alan Cha, and Jim A. Laredo. 2018. Generating GraphQL-Wrappers
for REST (-like) APIs. In International Conference on Web Engineering (ICWE ’18).
Springer International Publishing, 65-83. https://doi.org/10.1007/978-3-319-
91662-05

https://web.archive.org/web/20200910231657/https://stackoverflow.com/questions/37337466/how-do-you-prevent-nested-attack-on-graphql-apollo-server/37338465
https://web.archive.org/web/20200910231657/https://stackoverflow.com/questions/37337466/how-do-you-prevent-nested-attack-on-graphql-apollo-server/37338465
https://web.archive.org/web/20200910231657/https://stackoverflow.com/questions/37337466/how-do-you-prevent-nested-attack-on-graphql-apollo-server/37338465
https://web.archive.org/web/20200910231907/https://engineeringblog.yelp.com/2017/05/introducing-yelps-local-graph.html
https://web.archive.org/web/20200910231907/https://engineeringblog.yelp.com/2017/05/introducing-yelps-local-graph.html
https://web.archive.org/web/20200910231907/https://engineeringblog.yelp.com/2017/05/introducing-yelps-local-graph.html
https://graphql.org/graphql-spec/
https://www.contentful.com/developers/docs/references/graphql/#/introduction/api-rate-limits
https://www.contentful.com/developers/docs/references/graphql/#/introduction/api-rate-limits
https://developer.github.com/v4/
https://github.com/github/platform-samples/tree/master/graphql/queri
https://github.com/github/platform-samples/tree/master/graphql/queri
https://developer.github.com/v4/guides/resource-limitations/
https://developer.github.com/v4/guides/resource-limitations/
https://github.com/graphql/graphiql
https://github.com/graphql/graphiql
https://graphql.org/learn/introspection/
http://graphql.org/learn/pagination/
https://graphql.org/learn/schema/#the-query-and-mutation-types
https://graphql.org/learn/schema/#the-query-and-mutation-types
https://github.com/APIs-guru/graphql-faker
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://docs.oracle.com/database
https://github.com/APIs-guru/graphql-apis
https://facebook.github.io/relay/graphql/connections.htm
https://facebook.github.io/relay/graphql/connections.htm
https://shopify.dev/concepts/about-apis/rate-limits#graphql-admin-api-rate-limits
https://shopify.dev/concepts/about-apis/rate-limits#graphql-admin-api-rate-limits
https://shopify.dev/docs/storefront-api
https://www.yelp.com/developers/graphql/guides/rate_limiting
https://www.yelp.com/developers/graphql/guides/rate_limiting
https://github.com/4Catalyzer/graphql-validation-complexity
https://cloud.google.com/apigee/
https://www.ibm.com/cloud/api-connect
https://github.com/pa-bru/graphql-cost-analysis
https://github.com/pa-bru/graphql-cost-analysis
https://www.3scale.net/
https://github.com/slicknode/graphql-query-complexity
https://github.com/slicknode/graphql-query-complexity
http://graphql.org/users
http://www.diva-portal.org/smash/get/diva2:1237221/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:1237221/FULLTEXT01.pdf
https://doi.org/10.1109/SANER.2019.8667986
https://doi.org/10.1109/SANER.2019.8667986
https://web.archive.org/web/20200910232048/https://engineering.fb.com/core-data/graphql-a-data-query-language/
https://web.archive.org/web/20200910232048/https://engineering.fb.com/core-data/graphql-a-data-query-language/
https://web.archive.org/web/20200910232048/https://engineering.fb.com/core-data/graphql-a-data-query-language/
https://doi.org/10.5281/zenodo.4023299
https://doi.org/10.1145/1375581.1375607
https://doi.org/10.1145/1375581.1375607
https://doi.org/10.1145/3178876.3186014
https://web.archive.org/web/20200910232552/https://medium.com/slite/avoiding-n-1-requests-in-graphql-including-within-subscriptions-f9d7867a257d
https://web.archive.org/web/20200910232552/https://medium.com/slite/avoiding-n-1-requests-in-graphql-including-within-subscriptions-f9d7867a257d
https://web.archive.org/web/20200910232552/https://medium.com/slite/avoiding-n-1-requests-in-graphql-including-within-subscriptions-f9d7867a257d
https://web.archive.org/web/20200414211542/https://reactjs.org/blog/2015/05/01/graphql-introduction.html
https://web.archive.org/web/20200414211542/https://reactjs.org/blog/2015/05/01/graphql-introduction.html
https://web.archive.org/web/20200414211542/https://reactjs.org/blog/2015/05/01/graphql-introduction.html
https://web.archive.org/web/20200910232751/https://www.apollographql.com/blog/securing-your-graphql-api-from-malicious-queries-16130a324a6b/
https://web.archive.org/web/20200910232751/https://www.apollographql.com/blog/securing-your-graphql-api-from-malicious-queries-16130a324a6b/
https://web.archive.org/web/20200910232751/https://www.apollographql.com/blog/securing-your-graphql-api-from-malicious-queries-16130a324a6b/
https://web.archive.org/web/20200910232932/https://community.ibm.com/community/user/imwuc/blogs/rob-thelen1/2020/06/16/api-connect-is-making-graphql-safer-for-the-enterp
https://web.archive.org/web/20200910232932/https://community.ibm.com/community/user/imwuc/blogs/rob-thelen1/2020/06/16/api-connect-is-making-graphql-safer-for-the-enterp
https://web.archive.org/web/20200910232932/https://community.ibm.com/community/user/imwuc/blogs/rob-thelen1/2020/06/16/api-connect-is-making-graphql-safer-for-the-enterp
https://doi.org/10.1007/978-3-319-91662-0_5
https://doi.org/10.1007/978-3-319-91662-0_5

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Motivation
	2.2 Existing GraphQL Query Cost Analyses

	3 A Novel GraphQL Formalization
	3.1 GraphQL Schemas and Queries
	3.2 Query Execution

	4 Query Complexity
	4.1 GraphQL Pagination Conventions
	4.2 Configuration for Pagination Conventions

	5 GraphQL Query Cost Analysis
	5.1 Resolve and Type Complexity Analyses
	5.2 Time/Space Complexity of the Analyses
	5.3 Mutations and Subscriptions

	6 Evaluation
	6.1 A GraphQL Query-Response Corpus
	6.2 RQ1: Configuration
	6.3 RQ2-RQ4: Complexity Measurements
	6.4 RQ5: Comparison to Other Static Analyses

	7 Discussion and Related Work
	8 Application example: API Gateway
	9 Threats to Validity
	10 Conclusion
	References

