
116 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

Editor: Robert Blumen

Symphony Commerce

robert@robertblumen.com

Microservices

Johannes Thönes

ONE GOAL of the Software Engineer-

ing Radio podcast is to be a source of

information about the latest archi-

tectural trends. Trends emerge from

practice and take a while to show up

in written form. The fi rst book on mi-

croservices isn’t due until spring 2015.

For the professional software engineer,

conferences, online talks, and podcasts

are often the best sources for the new-

est information.

In this month’s podcast (episode 213),

Johannes Thönes talks with James Lewis

about microservices. This podcast is the

third one in the fall schedule to address

this topic. In episode 210, Stefan Tilkov

discusses architecture and microservices;

in episode 216, Netfl ix architect Adrian

Cockroft discusses the cloud-based plat-

form. The upcoming episode 217 on the

Docker container covers a popular piece

in the deployment of these systems (see

the sidebar).

The following excerpt contains only

a fraction of the show. Space didn’t per-

mit us to include discussions covering

the relationship between microservices

and Conway’s law, CQRS (Command

Query Responsibility Segregation),

REST (representational state transfer),

operational complexity and the impact

on development operations, “isn’t this

just SOA?,” agile development, testing,

and monitoring.

I hope you’ll download the entire

show and listen. —Robert Blumen

What’s a microservice?

A microservice, in my mind, is a small

application that can be deployed inde-

pendently, scaled independently, and

tested independently and that has a sin-

gle responsibility. It is a single responsi-

bility in the original sense that it’s got a

single reason to change and/or a single

reason to be replaced. But the other axis

is a single responsibility in the sense that

it does only one thing and one thing

alone and can be easily understood.

What would such a single thing be?

An example of a single thing might be a

single responsibility in terms of a func-

tional requirement, or it might be in

terms of a nonfunctional requirement

or, as we’ve started talking about them,

cross-functional requirements.

An example might be a queue

 processor—something that’s reading

a message from a queue, performing a

small piece of business logic, and then

passing it on. Or it might be something

that’s cross-functional, or nonfunc-

tional, or it might be something that has

the responsibility for serving a particu-

lar resource or resource representation.

Like a user.

Like a user or, say, an article, or it might

be a risk in insurance or something like

this, but something that’s very focused

and very small and that performs a sin-

gle task on its own.

I have the impression that microser-

vices have become quite popular. Why

do you think that is?

SOFTWARE

ENGINEERING

Continued on p. 113

 JANUARY/FEBRUARY 2015 | IEEE SOFTWARE 113

SOFTWARE ENGINEERING

We’ve got this big application. It’s

been growing for two-and-a-half

years or five years or 10 years, but

we can’t maintain it anymore. It’s

just too difficult to actually make

any functional changes to it. We

need to deploy this application

into the cloud. We need software

as a service, but at the moment

that is impossible.

As a result of that, the ideas

evolved of starting to splitting ap-

plications into smaller cooperating

components that are running out of

process and talking to one another,

which can be maintained separately,

scaled separately, or thrown away if

needed.

A number of different communi-

ties have grown over time that have

demonstrated that this approach to

building software is viable for pro-

duction. When you look at com-

panies on the scale of Netflix, then

it’s almost a necessity as they grow

income. Adrian Cockroft has said

that they work this way because

they want to build systems and make

changes as fast as possible.

To answer your question, ‘Why is

it so popular now?’ a lot of organi-

zations have built up technical debt

over the last number of years. They

have realized that to scale more, to

be more effective at delivering soft-

ware into production, and to take

advantage of things like continuous

delivery, they need an approach that

allows them to do scale along differ-

ent axes independently of things like

continuous delivery.

I think it’s about the right time

for an idea like microservices to take

off because a lot of companies are

facing the same problems.

You said something interesting

about how people with a large

monolithic application are split-

ting it into microservices. Is there

a typical form of introducing

microservices?

That’s a great question and one I’ve

actually been struggling with. It goes

right to the heart of the question: do

you start with microservices, or do

you refract to them later?

Empirically, most of the organi-

zations have actually started with

something big and have split that

big thing up. That’s the case for

most organizations that are build-

ing a microservices-style imple-

mentation. For example, Netflix.

The canonical example is Amazon.

Amazon started with a big data-

base and then moved to a service-

oriented architecture.

Let’s talk a little bit more about

how you technically build a mi-

croservice. When I build a mi-

croservice for user authentication,

what languages would I use? What

standards do I build on, and what

do I need to do to make it happen?

One of the guiding principles be-

hind this is that you get the freedom

to choose a lot of your tooling on

a case-by-case basis. Rather than it

being a particular language or par-

ticular back-end data store for your

entire product stack, you get the

flexibility to make informed deci-

sions based on the right tooling for

the situation at hand.

There are no right or wrong

choices. If you’re talking about a

user service, it is easily implemented

in C#, Java, or any other modern

programing language. Pretty much

any programming language is going

to be suitable.

The key thing is to make the

stack lightweight. Rather than us-

ing the traditional heavy stacks and

deploying them into big application

containers (like JBoss and Tomcat),

you can use lightweight alternatives,

such as embedded Jetty, embedded

Tomcat, SimpleWeb, or WebIt.

.NET-land is an interesting place

at the moment because traditionally

it has deployed into IIS. We’ve de-

ployed all of our applications into

this managed environment. But even

in the .NET world, there’s been a

movement to bring in some of their

learnings from the Unix and Java

communities around using embed-

ded services. For example, we’re see-

ing more projects using a non-CFX

alternative to some of their web APIs

or MVC frameworks, and then us-

ing things like Owen. It’s about rec-

ognizing the centralization of the

model that requires you to put all of

your logic in one place. That place

is the ESB, which provides all of the

routing and data transformation re-

quired to get your applications talk-

ing to each other.

Is the “smart endpoint and dumb

network” a reference to the Unix

model?

It could be read like that. The rea-

son we chose that name was more

around the enterprise service bus

(ESB) model. Inside Thoughtworks,

for as long as I can remember, there’s

been a tendency to distrust heavy

iron when it comes to integration.

Big ESB products make a lot

of promises about solving all your

problems. I have seen a lot of imple-

mentations of “service-oriented ar-

chitecture” with everything hanging

off a big central ESB. I have never

seen one of those succeed. It’s about

recognizing the centralization of the

model that requires you to put all of

your logic in one place. That place is

the ESB, which provides of all of the

routing and data transformation re-

quired to get your applications talk-

ing to each other.

Continued from p. 116

SOFTWARE ENGINEERING

114 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

Relying on one of these things

to solve all your problems is, in

my mind, not the right approach.

There’s a great talk by Jim Weber

and Martin Fowler called “Does

My Bus Look Big in This?,” which

they did as a keynote at QCon

some years ago. Jim talked about

the idea of the spaghetti box: the

ESB as the panacea for all your ills.

His line on that is it makes your di-

agrams look nice. You look at your

enterprise architecture [diagrams],

and they’ve got all these cross-

ing ugly lines It’s really tempting

to put the ESB box in the middle

because suddenly all your lines

are straight. That’s a great thing if

you’re an architect.

But of course all the lines are still

there. They’re just in the middle of

a spaghetti box. It still looks like a

spaghetti box.

But when all the routing isn’t done

by the ESB, who does the routing?

Do I need to do the routing?

You certainly need to understand

more about how your applications

communicate with one another. If

you’re building more services you end

up with more integration problems.

In the past, you might have been un-

lucky to talk to three external sys-

tems. Now you have to be cognizant

of integration problems when you

talk to your own systems. And there

are ways to do that. Event-driven ap-

plications (with either publish-and-

subscribe messaging, or HTTP and

resource representation) allow you

to decouple compared to using point-

to-point RPC the whole time.

Isn’t that a bit like moving the

complexity from the monolith into

the networking layer?

The short answer to that is yes. Ac-

tually, when I originally talked to

people about this, one of the great

comments I got back, from Martin

Fowler, was that we’re shifting the

accidental complexity (in the sense

that Fred Brooks used the term)

from inside our application in glue

code in our components and mod-

ules within our application out into

infrastructure.

This is one of the reasons that

now is a good time for this because

we have many more ways to manage

that complexity: programmable in-

frastructure, infrastructure automa-

tion, the movement to the cloud, the

cloud being ubiquitous. Those sorts

of problems, the problems of under-

standing how many applications we

have, how they’re talking to one an-

other—we have better tools to ad-

dress those things now.

You mentioned domain-driven de-

sign in the beginning. Is microser-

vices domain-driven design with a

“service” label?

Microservices is the coming together

of a bunch of better practices from

a number of different communi-

ties. It is a combination of great

stuff from the domain-driven-design

community around strategic design,

bounded context, subdomains, how

to separate out your domains, and

how to partition a very big problem

domain into smaller domains so that

you can manage them. It’s also tak-

ing a bunch of the better practices

from operational automation and

programmable infrastructure, de-

SOFTWARE ENGINEERING RADIO

Visit www.se-radio.net to listen to these and other insightful hour-long

podcasts.

RECENT EPISODES

• 213—James Lewis sits down with Johannes Thönes to explain the

microservices architectural pattern, the forces driving it, the costs and

benefits, and the organizational impact.

• 214—Grant Ingersoll, founder and CTO of LucidWorks, talks with Tobias

Kaatz about his book Taming Text: How to Find, Organize, and Manipulate It.

• 215—The three living authors of Design Patterns: Elements of Reusable

Object-Oriented Software, with Johannes Thönes, offer a 20-year retro-

spective on the writing of the book and its subsequent impact on design

in software engineering.

UPCOMING EPISODES

• 216—Former Netflix architect Adrian Cockroft talks with Stefan Tilkov

about the modern cloud-based platform, Netflix’s move to the cloud, and

microservices.

• 217—James Turnbull talks with Charles Anderson about the open source

container Docker, containers versus virtual machines, and the implica-

tions for system administrators.

SOFTWARE ENGINEERING

JANUARY/FEBRUARY 2015 | IEEE SOFTWARE 115

velopment operations communities,

cloud communities, and the integra-

tion communities.

You’ve been working hard to make

people aware they can solve in-

tegration problems using just

the tooling available for free that

drives the Web, without having to

invest in big iron.

From the domain-driven-design

community, the way you do “archi-

tecture” has to be driven from the

business in the business context. You

have to understand what the busi-

ness problems are, what the busi-

ness landscape looks like, and what

the business processes are, and then

drive a software product underneath

that. For me, that’s the heart of

domain- driven design.

One of my colleagues uses the

great phrase “business and architec-

ture isomorphism.” This is the idea

that your business and the design of

your systems should be very simi-

lar. When you look at your business,

you should see your IT systems and

look at your architecture and see

your business. If you’re a technolo-

gist or business person, there should

be recognition both ways that this is

going on.

How big are these services?

That’s something we’ve been talking

about internally for quite a while.

I’ve seen them ranging from a couple

of hundred lines of code up to a cou-

ple of thousand lines of code. The

guidance I’ve been giving people is it

does one thing and one thing only.

It’s diffi cult to imagine a million

lines of code doing one thing and

one thing only. The guidance is you

should be able to understand them.

They should have a single reason to

change, and they probably shouldn’t

be more than a couple thousand

lines of code.

When you get to that point, the

number becomes important. It’s prob-

ably more important to think about

how many of them you’re capable of

supporting operationally than it is to

think about how small they actually

are because it’s better to have slightly

bigger ones and fewer of them if you

don’t have fully automated deploy-

ment into production.

JOHANNES THÖNES is a developer and

consultant for ThoughtWorks. Contact him at

johannes.thoenes@gmail.com.

IEEE Software (ISSN 0740-7459) is published bimonthly by the
IEEE Computer Society. IEEE headquarters: Three Park Ave., 17th
Floor, New York, NY 10016-5997. IEEE Computer Society Publica-
tions Offi ce: 10662 Los Vaqueros Cir., Los Alamitos, CA 90720; +1
714 821 8380; fax +1 714 821 4010. IEEE Computer Society head-
quarters: 2001 L St., Ste. 700, Washington, DC 20036. Subscribe to
IEEE Software by visiting www.computer.org/software.

Postmaster: Send undelivered copies and address changes to IEEE
Software, Membership Processing Dept., IEEE Service Center, 445
Hoes Lane, Piscataway, NJ 08854-4141. Periodicals Postage Paid
at New York, NY, and at additional mailing offi ces. Canadian GST
#125634188. Canada Post Publications Mail Agreement Number
40013885. Return undeliverable Canadian addresses to PO Box 122,
Niagara Falls, ON L2E 6S8, Canada. Printed in the USA.

Reuse Rights and Reprint Permissions: Educational or personal use
of this material is permitted without fee, provided such use: 1) is
not made for profi t; 2) includes this notice and a full citation to the
original work on the fi rst page of the copy; and 3) does not imply
IEEE endorsement of any third-party products or services. Authors

and their companies are permitted to post the accepted version of
IEEE-copyrighted material on their own webservers without permis-
sion, provided that the IEEE copyright notice and a full citation to
the original work appear on the fi rst screen of the posted copy. An
accepted manuscript is a version which has been revised by the au-
thor to incorporate review suggestions, but not the published version
with copyediting, proofreading, and formatting added by IEEE. For
more information, please go to: http://www.ieee.org/publications_
standards/publications/rights/paperversionpolicy.html. Permission to
reprint/republish this material for commercial, advertising, or pro-
motional purposes or for creating new collective works for resale or
redistribution must be obtained from IEEE by writing to the IEEE
Intellectual Property Rights Offi ce, 445 Hoes Lane, Piscataway, NJ
08854-4141 or pubs-permissions@ieee.org. Copyright © 2015 IEEE.
All rights reserved.

Abstracting and Library Use: Abstracting is permitted with credit to
the source. Libraries are permitted to photocopy for private use of
patrons, provided the per-copy fee indicated in the code at the bottom
of the fi rst page is paid through the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923.

NEXT ISSUE:

March/April 2015

Release
Engineering

See www.computer.org/

software-multimedia

for multimedia content

related to this article.

softw

for m

relat

