23 Oct 2025

%
)

An Empirical Study on Database Usage in Microservices

Maxime André®*, Marco Ragliantib, Souhaila Serbout®, Anthony Cleve?®, Michele Lanza®

“University of Namur, Belgium
PREVEAL @ Software Institute — USI, Lugano, Switzerland
“University of Zurich, Switzerland

Abstract

Microservices architectures are an integral part of modern software development. Their adoption brings significant changes to
database management. Instead of relying on a single database, a microservices architecture is typically composed of multiple,
smaller, heterogeneous, and distributed DBs. In these data-intensive systems, the variety and combination of database categories
and technologies play a crucial role in storing and managing data. While data management in microservices is a major challenge,

research literature is scarce.

We present an empirical study on how databases are used in microservices. On the dataset we collected (and released as open
data for future research), considering 15 years of microservices, we examine ca. 1,000 GitHub projects that use databases selected
among 180 technologies from 14 categories. We perform a comprehensive analysis of current practices, providing researchers and
practitioners with empirical evidence to better understand database usage in microservices. We report 18 findings and 9 recom-
mendations. We show that microservices predominantly use Relational, Key-Value, Document, and Search databases. Notably,
—152% of microservices combine multiple database categories. Complexity correlates with database count, with older systems fa-
voring Relational databases and newer ones increasingly adopting Key-Value and Document technologies. Niche databases (e.g.,
EventStoreDB, PostGIS), while not widespread, are often combined with a mainstream one.

1. Introduction

—
>
o0

Q)
-

S

251

arxiv

Microservices architectures have significantly gained popu-
larity, becoming an integral part of the software development
landscape. This architectural style is now widely adopted by
large and software-intensive companies like Amazon, Google,
and Netflix [1}12].

Their adoption brings significant changes to database (DB)
management [3| 4] |5, |6]. According to the literature, the mi-
croservices architecture paradigm, which promotes the decom-
position of a system into loosely coupled, independent, het-
erogenous, and manageable services, is expected to naturally
extend to DBs [6]. Specifically, each microservice is expected
to have its own dedicated DB(s) following the database server
per microservice pattern [3]], ensuring data autonomy and min-
imizing dependencies. This is aligned with the polyglot persis-
tence [34,135]. In these data-intensive systems, the large vari-
ety and combination of DB categories and technologies play
a crucial role in storing and managing data. Depending on
the requirements, the main motivations concern, for instance,
the need for independent schema evolution, data caching, data
replication, data partitioning, decentralized data management,
etc. These mechanisms aim to reduce coupling and ease main-
tenance and evolution [3]].

*Corresponding author
Email addresses: maxime .andre@unamur .be (Maxime André),
marco.raglianti@usi.ch (Marco Raglianti),
souhaila.serbout@uzh.ch (Souhaila Serbout),
anthony.cleve@unamur.be (Anthony Cleve), michele.lanza@usi.ch
(Michele Lanza)

Although a few existing studies recognize that data manage-
ment in microservices is a major challenge [7, 3], it received
little attention in the research literature. Current works lack
concreteness, especially regarding the available datasets and in-
depth empirical investigations that highlight the current status.
In particular, the variety and numerous combinations of DB cat-
egories and the specific technologies and their implementations,
across multiple heterogeneous microservices, often require pre-
cise justifications to understand the underlying reasons emerg-
ing from the community trends. Indeed, despite the growing
adoption of microservices architectures, there is still a notice-
able gap and a lack of benchmarks in the literature [3]] regarding
how microservices practitioners reason and handle data man-
agement in vivo. Existing studies [3} 18,1619} 10] confirm a trend
in the adoption of multiple DBs in modern software, such as
the combination of relational and document DBs, the use of a
cache layer, and the exploitation of search-based mechanisms.
Some conclude that a poor understanding of data management
practices, such as technology combinations, could lead to the
introduction of a technical data debt [10]. To fill this gap, con-
crete observations on the state of the practice could be useful to
practitioners, teachers, and students, helping them to make the
right technical choices.

We present an empirical study on how DBs are used in mi-
croservices. Considering 15 years of history, from 2010 to
2025, we examine ca. 1,000 open-source projects mined from
GitHub that use DBs selected among 180 technologies (e.g.,
PostgreSQL, Redis, MongoDB) from 14 categories (e.g., Rela-
tional, Key-Value, Document).

https://arxiv.org/abs/2510.20582v1

We perform a comprehensive analysis providing insights into
current practices, emphasizing the most prevalent DBs used in
microservices. We also investigate the way they are combined
in practice, observing recurrent patterns. We support our obser-
vations with objective, fine-grained metrics and highlight rela-
tionships between characteristics (e.g., complexity vs. age).

Our study leads to 18 findings about DB usage in microser-
vices, with a two-fold implication. First, on the industry and
open-source side, our work helps practitioners to understand the
latest trends and, thanks to the 9 recommendations we derive,
to select the most appropriate data storage strategies in their
projects. Second, on the research side, it guides researchers in
shaping future directions based on empirical evidence and an
open-source dataset.

2. Research Methods

We describe the research methods we employed to conduct
our empirical study. We present our research question, the ini-
tial list of considered DBs and technologies, and the methodol-
ogy we followed to collect and analyze the data from GitHub
repositories.

2.1. Research Questions

We aim to answer the following research questions (noted
RQ%*) to understand how DBs are used in microservices:

e RQ1: What database categories and technologies are used
in microservices, and how prevalent are they? From the
open-source microservices collected, we analyze the DB de-
pendencies, establish their distribution, and assess the most
popular DB categories (e.g., Relational, Document, Key-
Value, Column, Graph) and technologies (e.g., PostgreSQL,
MongoDB, Redis).

e RQ2: How are databases combined in microservices, and
what are the characteristics of those combinations? We
analyze the DB categories and technologies associations in
microservices, their breakdown as stated in dependencies,
and determine the most popular combinations, exploring
further recurrent patterns and computing relevant metrics.

e RQ3: What is the relationship between the complexity of mi-
croservices and their data management strategy? We seek
to understand whether the complexity (e.g., number of ser-
vices, size of the project) is correlated with the number of
DB technologies, whether the complexity is linked to a cer-
tain degree of category associations, or whether some cat-
egory associations are more suitable for projects of certain
complexity.

o RQ4: What is the relationship between the age of microser-
vices and their database choices? We consider the age of
microservices and aim to find rationales in their DB choices,
to recommend different strategies for older and more recent
projects.

2.2. Database Categories and Technologies

Table [T] lists the DB categories considered in our study. We
extracted them from DB-Engines’ March 2025 ranking [36],
considering the top 250 DB management systems (DBMSs).
The exhaustive list of DB technologies is available in our repli-
cation package (Section[7).

Table 1: DBMS categories considered in our study.
Category ‘ Example DBMS
Relational Oracle, MySQL, MS SQL Server, PostgreSQL
Document MongoDB, Couchbase, CouchDB
Key-Value Redis, Memcached, etcd
Column Cassandra, HBase, ClickHouse
Graph Neo4j, GraphDB
Time Series InfluxDB, kdb+, TimescaleDB
Vector Pinecone, Milvus, Qdrant, Chroma, Weaviate
Spatial PostGIS
Hierarchical | IBM IMS
Network IDMS
Object Actian, db4o, ObjectDB
Event EventStoreDB
Search Elasticsearch, Splunk, Solr
Others Amazon DynamoDB, Aerospike

Since the presence as a Docker container is a distinction cri-
terion (see Section @]), we excluded DB technologies unavail-
able as Docker images (e.g., Microsoft Access, FileMaker).
Following the methodology of Paiva et al., we also excluded
warehouses (e.g., Snowflake, Databricks, Apache Hive, Google
BigQuery), frameworks (e.g., Apache Flink), services (e.g.,
Amazon Aurora, Prometheus), and platforms (e.g., Google
Firebase, Google Firestore, Microsoft Azure Table Store) [9].
In the end, we considered a total of 180 technologies.

DBs are categorized by type (Relational, Document, Key-
Value, Column, Graph, Time Series, Vector, Spatial, Hierar-
chical, Network, Object, Event, Search Engine) and ranked by
popularity according to DB-Engines. Information and clas-
sifications were cross-verified through the literature [11} [12}
13, 114, [15, 3], [8, 9] and online sources such as Database of
Databases [37] and Wikipedia 3839, 40} 411 142} 43]).

For each DB, the first category is considered to be the main
one. Less common, ambiguous, or multi-type DBs (e.g., Native
XML, RDF), are grouped under the “Others” category. Each
DB is associated with a regular expression (RE) to identify
its corresponding Docker image, if available. REs, verified on
Docker Hub [44], are included in our replication package.

2.3. GitHub Repositories and Microservices

We mined GitHub using its REST (REpresentational State
Transfer) API (Application Programming Interface) [45] to col-
lect microservices project repositories that use DBs. Min-
ing repositories is valuable for researchers seeking up-to-date
real-world systems to evaluate their approaches and tools [16].
Benchmarks and datasets specifically studying microservices
and DBs are limited in the literature [17, [18]]. There are sev-
eral challenges to be addressed to obtain a good benchmark.

~121M ~140K

@ ruter

© enricH

~140K ~1K

© oistinGuisH

Figure 1: The mining process for extracting microservices with DBs from GitHub.

First, it is not straightforward to identify a GitHub reposi-
tory belonging to a system that adheres to a microservices ar-
chitecture, as they can follow various organizational structures,
such as mono-repositories (a.k.a. mono-repo) [6l] or multi-
repositories (a.k.a. multi-repo). Additionally, documentation
that lists and describes all the microservices within a given ar-
chitecture is often unavailable, further complicating the mining
process. When examining a specific repository, there is rarely
a clear and explicit indication that it belongs to a microservices
architecture. Sometimes, terms like “microservice” might help,
but other associated terms like “REST API” can also be ob-
served in titles, tags, descriptions, or README files, either at
the top level of the architecture or at sub-levels representing
parts of the architecture. Since a microservice is modular and
distributed, it can be difficult to scope. Some components can
be spread, isolated in other locations, without any clear links.
The heterogeneity of implementations affects the automation
capabilities of mining such repositories. These challenges of-
ten lead to noisy or incomplete results. Current benchmarks
commonly require manual annotation, which slows down the
process and limits the number of results included and analyzed.
To address these challenges, we propose a mining process that
combines several fine-grained filters and heuristics to reduce the
difficulty of characterizing microservices repositories and pro-
vide a large benchmark dataset of microservices architectures.

The mining process is depicted in Figure[I} To ensure the re-
producibility of our research, the source code and the complete
benchmark dataset are available in our replication package.

@ Filter. Since GitHub may host private and inactive
projects [16, I8, 9], we applied six filtering criteria to efficiently
narrow down our search from 121 million repositories. The aim
was to identify the relevant ones that are active real-world sys-
tems. After filtering we retained 140,000 repositories based on:

1. Disk Size: To eliminate outliers and retain repositories with
meaningful content, we filtered them based on disk size [8]].
We selected those with a size between 500 KB and 1 GB.

2. Stars Count: To retain relevant repositories by popular-
ity, we applied a filtering criterion based on the number of
stars [[19]]. We set the threshold to at least 100 stars.

3. Commit History: To target real and actively maintained
systems, we retained only repositories with at least 100
commits, inspired by the work of d’ Aragona et al. [18]].

4. Structural Completeness: To remove placeholders and
projects without the basic level of documentation encour-
aged on GitHub, we included only repositories with at least
one README file and at least two directories [16]].

5. Recent Updates: We focused on repositories that are likely
to follow modern microservices practices by selecting only
those updated after January 1, 2015. This date is often con-
sidered to mark the widespread adoption of microservices
architectures [35]].

6. Programming Languages: We targeted repositories writ-
ten in popular programming languages, particularly those
frequently used in microservices development [14, 15} [17]
18], [46l. The selected languages include C, C++, C#, Go,
Java, JavaScript, PHP, Python, Ruby, Scala, and TypeScript.

@ Enrich. To better identify microservices repositories,
we enrich the dataset with additional information. Using
the GitHub API, we retrieve the content of README files,
which often contain keywords and valuable project details,
as well as Docker Compose ﬁlesm commonly used to define
multi-container environments typical of microservices architec-
tures [|6} 18]].

© Distinguish. Based on the enriched dataset, we deepen the
filtering process targeting repositories likely to be microser-
vices. We define a number of heuristics to compute a score for
each repository. The higher the score, the more likely the repos-
itory is a microservice. The heuristics are based on the presence
of keywords in the repository, the number of specific files and
directories, the presence and content of README and Docker
Compose files, and the number of services and DBs declared in
the Docker Compose files.

The keywords are the following variants: microservice,
micro-service, micro service, microservices, micro-services,
micro services. In addition, we add keyword variants about
the different organizational structures: monorepo, mono-repo,
multirepo, multi-repo. Finally, the rest api keyword aims to in-
clude the parts of microservices architectures that are outside
the scope of a single repository and are intended to be served as
external APIs for other services.

We compute the score based on the following heuristics:

o A keyword is featured in the title, the description, the repos-
itory topics, the contents of the README files.

o A keyword is featured in at least a directory, a file, a Docker
Compose file.

e The repository Docker Compose files declare at least one
service or one DB.

e The repository counts more services than DBs.

Ihttps://docs.docker . com/compose/

https://docs.docker.com/compose/

Microservices
- N w B
o (=] (=) o
o o o o o
» I
s> I

B Sy A & G 08 S QO T 2 O R A s A B4 o Co R e 2 S50y S Gy T, S 2 s G T OnTp SO 2T O oS Ty TS, R
o QO?Q/%O'% K /oﬁofoao%:f,o f@o/’%f@of"of%f’o/%f"v/ G @\;/,,f%?@fo, Cg;,/;j/%@oéz,&?,oé of" o,f%-%f‘.’e;’%f’%,% \;‘%zo%;’%(% (5% %29(@06 Q;:%;% :sc;%% f@f%;’%;’og/o % o;" ?:%o,%
%, X% g%o&e% @Oo@%s %% O@%‘\@ so; N ooofé\ ot B0 0 e l6, 40/0»(&@/)&»0, %y (6+<) 6?)6 2,%65,0 o5 6’00 o 0% 4/5 <, O %000
2 U, K . e ey By 8 2 A RS © “o,) &L s 000 A
¢ s % N, 7% % e % “ D% %
%, % N S8, % %
% &3 %, 75
(S
Database technologies
M Relational m Key-Value ™ Document Search Column Time series ™ Vector Others ®m Event W Graph Spatial
Figure 2: DB technologies utilized in microservices, colored by category.
500
8 400
Qo
z
S 300
v
o
o
£ 200
=
HH
100
. i____ m__ - e -
RN & Ly 4 O O Q. C.&.0. 2.8 9 G500, S %2 NG O, ’ G A & RS A O
O»“(%\s%o 7 004»6’9/ ‘9/%’”@69(,@&0%0,@:@;’/40’27‘?@%@ @’%,) %, of%fs,, s G Ry J;,@o,(fbe AN ‘)'}’s A (YN %/’7"’0/9’4 %%O é,gzj% o(,/j’os S ofokb%o X
O, 00207 % 00 Q0% e S T oy &K, 08 080,80, 808 i 00, S S8 e, 2 e o S o R A0 2, PSS s g s 0n R0 80 205 5 0 R, 0 X, B 05 O,
8, O %o, %Y QB 605 %% %, 1028 6 Va5 Py ok, OF 8 0% 2% % 20 %, %0, %60, N
(o &40 c"e Q, Q% 7 Qbeoﬁ) LAY So 587 R O o 'e 2,8 %,
LN % 7 % 9, (4 e %) % ®
Q@ %% 0% (//O % %,
- & % S
S
Database technologies
M Relational m Key-Value m Document Search Column Time series M Vector Others ® Event ™ Graph Spatial

Figure 3: DB technologies utilized in microservices, colored and grouped by category.

These heuristics aim to compute a likelihood score for a
repository to have a microservices architecture. All heuristics
are assessed independently.

Once the score is computed, in order to flag the repository as
a microservices architecture, it must satisfy all of the following
conditions:

The score is (strictly) greater than O.

The Docker Compose files declare at least one service.

The repository contains at least one keyword in the title,
description, topics, or README files.

The Docker Compose files declare at least one DB.

The repository counts more services than DBs.

We found 1,005 repositories that are likely to be microser-
vices. We stored them in a DB containing, for each reposi-
tory: GitHub ID, GitHub URL, git branch, owner username,
repository title, repository description, GitHub associated top-
ics, creation date, last updated date, disk size, star count, com-

mit count, contributor count, directory count, service directo-
ries list, service files list, README files and their content,
Docker Compose files and their content, service count based on
the Docker Compose files, DB list based on the ones declared
in the Docker Compose files, and programming languages list.
The DB dump is available in our replication package.

3. Results

3.1. RQI: Database Usage in Microservices

We compute the distribution of DB technologies and cate-
gories across all repositories. For each technology, we count
the number of repositories declaring it in their Docker Com-
pose files. In Figure 2] we present the DB technologies (x-axis)
we found in our dataset, sorted by popularity (i.e., number of
repositories that use them, y-axis). In Figure 3] we grouped
them by DB category.

Among the 1,005 repositories in our dataset, a total of 60 dis-
tinct DB technologies are identified out of the 180 considered,
highlighting significant heterogeneity with 11 different DB cat-
egories.

The most popular DB categories are Relational, Key-Value,
Document, and Search. As reported in Table E], Relational
DBs appear in 71.64% of repositories, followed by Key-Value
DBs in 42.09%, Document DBs in 25.77%, and Search DBs in
16.32%.

Table 2: Distribution of DB categories in microservices.

Category Count % | Category Count %
Relational 720 71.64% | Time Series 38 3.78%
Key-Value 423 42.09% | Vector 19 1.89%
Document 259 25.77% | Event 15 149%
Search 164 16.32% | Graph 10 1.00%
Column 50 4.98% | Spatial 8 0.80%

Others 14 1.39%

A repository is counted in a category if it has at least one
technology from it. Relational DBs also dominate in terms
of the number of distinct technologies (12), followed by Key-
Value DBs (8), Document DBs (6), and Search DBs (6). At
the other side of the spectrum we find the Spatial DBs category,
with a single technology (PostGIS).

Among our collected data, some categories and technologies
cannot be found. Notably, no Hierarchical, Network, or Object
DBs are identified in microservices. Table [3] shows the distri-
bution of the top 10 most popular DB technologies.

Table 3: Top 10 DB technologies used in microservices.

Technology Category Count Percentage
PostgreSQL Relational 498 49.55%
Redis Key-Value 390 38.81%
MySQL Relational 242 24.08%
MongoDB Document 242 24.08%
Elasticsearch Search 139 13.83%
MariaDB Relational 82 8.16%
Microsoft Sql Server Relational 63 6.27%
etcd Key-Value 39 3.88%
Apache Cassandra Column 30 2.99%
InfluxDB Time Series 27 2.69%

For the Relational category, PostgreSQL and MySQL dom-
inate, with 49.55% and 24.08% of repositories, respectively.
Redis, for Key-Value DBs, is present in 38.81% of reposito-
ries. MongoDB brings the top Document DB technology on
par with the second most popular in the Relational category,
with 24.08%.

Table] summarizes the most popular DB technology of each
category and its in-category percentage (i.e., popularity within
the category).

PostgreSQL is chosen 69.17% of the times when Relational
DBs are needed. With MySQL, they almost have a monopoly
on Relational DBs. In Key-Value and Document DBs, Redis
and MongoDB cover 92.20% and 93.44% respectively, mak-
ing them almost a de facto standard, save for a few excep-
tions. Elasticsearch occupies 84.76% of the Search landscape.
Apache Cassandra concerns 60.00% of Column DBs and, for
Time Series DBs, InfluxDB is present in 71.05% of cases. They

Table 4: Most popular DB technology for each category.

Category Technology Count Percentage
Relational PostgreSQL 498 69.17%
Key-Value Redis 390 92.20%
Document MongoDB 242 93.44%
Search Elasticsearch 139 84.76%
Column Apache Cassandra 30 60.00%
Time Series InfluxDB 27 71.05%
Event EventStoreDB 15 100.00%
Graph Neo4j 10 100.00%
Vector Milvus 9 47.37%
Spatial PostGIS 8 100.00%

are popular alternatives but not the only option in their respec-
tive categories. On the contrary, while EventStoreDB, Neo4;,
and PostGIS are not widespread, they have almost no alterna-
tives in their respective categories. Finally, Milvus and Qdrant
are similarly popular alternatives for Vector DBs.

RQI: Findings

Fl1.1 Four different categories of technologies are
widespread in microservices architectures (Rela-
tional, Key-Value, Document, and Search).

F1.2 Relational DBs are still prevalent, by a large mar-
gin, with multiple popular alternative technologies.

F1.3 Specific DB categories, despite their niche appli-
cations, should not be overlooked. For example,
Graph and Spatial DBs, while addressing special-
ized needs, are utilized in 10 and 8 repositories re-
spectively, indicating their relevance.

F1.4 For most categories, there is a specific technology
which is the most widespread (e.g., Redis for Key-
Value, MongoDB for Document). Relational DBs
have a more varied “footprint” of popular tech-
nologies.

F1.5 Sixty unique DB technologies show that diversity is
preferred to one-size-fits-all DBs.

3.2. RQ2: Database Associations in Microservices

For each repository and each Docker Compose file, we in-
spect the declared DB technologies. Figure [presents the
repositories (rows) and the DB technologies used (columns).
The repositories are sorted by number of DB technologies and
the DBs by popularity (see RQ1). The cells are filled if the
repository declares the DB technology in one of its Docker
Compose files. Only the top 25 repositories are shown. A full
interactive version, allowing access to the DB declaration in
GitHub, is provided in the replication package.

Figure 5] (top) proposes an overview of the 1,005 repositories
(columns) and their DB categories (rows).

PostgreSQL
MariaDB
MicrosoftSqlServer

Il CockroachDB
Oracle

shortlink-org/s...
HariSekhon/Nagi
apache/streampi
Xabaril/AspNetC.
confluentinc/de...
beekeeper-studi
debezium/debezi
DataDog/dd-trac...

apache/skywalki...
akka/alpakka
Budibase/budiba...

apache/airflow
ServiceStack/Se
apache/skywalki
cadence-workflo... Il
shuigedeng/taot...
cube-js/cube
9tigerio/db2res...
prisma/prisma [l I
axe-api/axe-api
BrighterCommand
NVIDIA/Generati... _
camunda/camundail Il

Spatial
Graph
Others
Event
Vector
Time series
Column
Search

-

Document L4

Key-Value

Relational

MicrosoftAzureSqlEdge

IBMDB2

.
7}
c
2 s
%) £ o
3 2 3% ¢ o
o c :uwzmmwom
°) e 2%%EQal83=2a
£ 9 2 O >0 cc o6 Q< cc
8aEn oL Eg:uumc‘uu_‘:w
5088283538853 23% 4
CLOFO0Oxo9=>5<<0=00xx
| .-i-
| |
[| |
[|
- g
[|
[|
_ m _
| --
[|
_ |
= [|
[|
[|
|
— |
[| _
m_ [|
| |

CrateDB

Elasticsearch
OpenSearch
Meilisearch
ApacheSolr
Typesense
Splunk

DataStax
[ScyllaDB

StarRocks
InfluxDB
TimescaleDB

ApacheDruid
TDengine

|

ApacheloTDB
OpenTSDB

M3DB

|

Milvus

Figure 4: Top 25 repositories sorted by number of DB technologies, colored by categories.

o
[}
[=}
€
©
c
3
Sm%
e2EQ
Crow
o 9 c E
o0 <
|
.
e o
.o
ce o oo

o [}
a8 o
2 =
v 6 5mn L
X 5 =00 S
a® 0o B . <
0WTB L oOoF LIPS
cococfPFcYo
L 3 0 g o o O =
o QoL 30> 00
UL <<n Lz
e o o
ee e o .
o o de
e oem oo oo sohmmm

Relational

ServiceStack/S
apache/skywalki
cadence-workfl

camunda/camunda I

Key-Value

Document

Repositories

Search

Time series
Vector

Others

Event

I‘ II Graph

Spatial

Figure 5: Repositories and their DB categories overview (top). Zoom-in on the top 25 repositories sorted by number of DB technologies (bottom).

PostGIS

The sorting of repositories and DBs remain the same. The
colored dots show the presence of the DB category in the repos-
itory. A zoom-in is done on the top 25 repositories in Figure 3]
bottom. A full version is available in the replication package.

The aim of these figures is to demonstrate the heterogeneity
of DBs in microservices and to highlight the most popular ones.
On the 1,005 repositories collected, we compute what we call
the database heterogeneity rate (DHR), which is the ratio be-
tween the number of microservices combining at least two DB
technologies (or categories) and the total number of microser-
vices. The DHR based on technologies is 0.52: Half of the
repositories mix two different technologies. The DHR based
on categories is 0.47, which highlights that some microservices
also use different technologies within the same category.

In Figure[f] we present a cross-matrix showing, for each pair
of possible DB categories, the percentage of combinations. The
y-axis and x-axis represent DB categories. They are sorted by
popularity according to the results obtained previously. Cells
are filled with a color gradient from white to black depending
on the percentage. Cells account also for the combinations of
more than just the exclusive pair, as long as the two categories
are present in the tuple. The diagonal indicates the percentage
of repositories having the category.

Relational Key-Value Document Search ~ Column Time series Vector ~ Others ~ Event Graph Spatial

100
Relational - JSWEE
Key-Value-129.35% '42.09%

Document- 11.14% 11.34% 25.77%

Search-10.45% 8.06% 4.58% 16.32%

Column- 3.28% 2.79% 2.09% 2.39% 4.98% 60
Time series- 2.39% 2.59% 1.29% 1.49% 0.40% 3.78%
Vector- 0.70% 1.29% 0.50% 0.30% 0.20% 1.89% 40
Others- 0.80% 0.80% 0.50% 0.50% 0.30% 0.30% 1.39%
Event- 0.90% 0.40% 0.90% 0.80% 0.10% 0.10% 0.10% 1.49% 2
Graph- 0.80% 0.50% 0.60% 0.50% 0.30% 0.20% 0.10% 0.10% 1.00%
Spatial- 0.30% 0.30% 0.10% 0.10% 0.20% 0.10% 0.80%

Figure 6: Pairwise combinations of DB categories.

(Relational, Key-Value) is the pair of DB categories most fre-
quently combined, in 29.35% of cases, followed by (Key-Value,
Document) in 11.34% of cases, and closely by (Relational,
Document) in 11.14% of cases. Combinations paired with
Search are quite popular: 10.45% for (Relational, Search),
8.06% for (Key-Value, Search), and 4.58% for (Document,
Search). The remaining associations appear in less than 3%
of cases. Some are non-existent: No combinations appear
for (Column, Spatial), (Time Series, Vector), (Vector, Event),
(Vector, Spatial), (Event, Graph), (Event, Spatial), or (Graph,
Spatial), suggesting that niche categories are generally not as-
sociated with each other. To overcome the limited overview
provided by pairwise associations, we report all combination
patterns observed for the top 5 DB categories with all the sub-
sets in their power set (and exclusive use).

Table [5] presents them formally with the mathematical nota-
tion of sets (e.g., R, K), difference (\), union (U), and inter-
section (N). Then, Figure [7] shows the corresponding Sankey
diagram [20] highlighting the frequency of each pattern.

Table 5: DB categories associations in microservices.

Association # ‘ Association #
R\(KUDUSUC} 337 | RnKNnDnNnSnNnC 11
RNK 183 | KNS 6
RNKND 43 | KNnDNS 8
RND 37 | RnSnC 3
KMRUDUSUC} 70 | RnDNnSNC 1
RNKNS 39 | KnC 2
RNS 32 | KnDnC 2
RNKNDNS 10 | DNnS 8
KnD 36 | KnDnNnSNncC 2
RNKNC 4| KNnSnC 2
RNC 7| S\RUKuUDuUC} 31
RNKnDNC 2| DnC 1
RNnDNS 6| SNC 2
D\{RUKUS U C} 90 | C(RUKUDUS} 6
RnDNC 2|1 DnSncC 0
RNnKNnSNC 3

Sets: (R)elational = 720, (K)ey-Value = 423, (D)ocument = 259, (S)earch = 164,
(C)olumn = 50.

R\{KUDUSUC)

. RNKND

K
B rno
W S

-
8 S IK\(RUDUSUC)
.

RNS

D
\ M rnkns

- B «no
\ wes RNKNDNS
— RNKNC
RNDNS
C A\ \ RNC

\ \
I D\{RUKUSUC)

RNKNDNC
KNns
RNAKNSNC
RNDNC
RNKNDNSNC
RNSNC
KNnbns
RNDNSNC
S\{RUKuDuUC}
Knc

Knbnc
Knsnc
Knbnsnc
bpns

pnc

snc
C\{RUKUDuUS}

Figure 7: Sankey diagram of the 5 DB categories associations.

The most popular association patterns for two categories are:
(Relational, Key-Value) (18,21%), (Relational, Document),
and (Relational, Search). For triplets: (Relational, Key-Value,
Document) (4,28%) and (Relational, Key-Value, Search). On
the side of quartets, (Relational, Key-Value, Document, Search)
is the most popular one with 10 occurrences, even though it
represents only 1% of the dataset. For quintets, we reveal 11
microservices repositories opting for (Relational, Key-Value,
Document, Search, Column). Once again, this happens only
for a tiny fraction of the repositories in the collected dataset,
but the fact that there are a few repositories mixing all the cate-
gories highlights the high variety in the wild.

The relationships between the associations are not transitive.
For example, no repository follows the (Document, Search,
Column) pattern, although (Document, Search), (Document,
Column), and (Search, Column) associations exist. This last
duo also shows that in the top 5, some repositories exist without
any DB categories from the top 3. Furthermore, excluding only
the top category (Relational DBs), we can observe that several
associations exist that do not include the most popular category.
For instance, we can notice 36 microservices repositories with
only Key-Value and Document DBs. Another interesting ob-
servation is the number of microservices repositories contain-
ing one and only one category of DBs. For instance, 337 out
of 1,005 repositories (33.53%) contain only Relational DBs, 90
(8.96%) contain only Document DBs, and 70 (6.97%) contain
only Key-Value DBs. Those are in the complement of the 0.47
DHR.

To analyze how niche DBs are connected with mainstream
ones, we propose a graph-based representation depicting links
between DB categories in Figure [§]

Relational

Key VaIU ‘ ~_

\\

Documen

\"\ { N /Event

Search //é ‘Q 1=

Vector

Others

Time serie:

Figure 8: Pairwise associations between mainstream (left) and niche (right) DB
categories.

Nodes represent DB categories, whose size depends on the
popularity, and links represent DB associations, where the size
of the link is proportional to the number of associations in that
category. Nodes on the left represent mainstream DB cate-
gories, while nodes on the right represent niche ones.

In line with previous observations, this graph confirms that
niche DBs are rarely associated with each other (0.37%). It also
shows that, in most cases, niche DBs are commonly associated
with a mainstream one (12.34%). Mainstream-mainstream DB
associations are the most popular (87.29%).

Finally, considering specific DB technologies, the most pop-
ular associations are (PostgreSQL, Redis), (Redis, MongoDB),
and (PostgreSQL, MongoDB) for duos, (PostgreSQL, Redis,
Elasticsearch) and (PostgreSQL, Redis, MongoDB) for trios,
and (PostgreSQL, Redis, MongoDB, Elasticsearch) for quar-
tets.

RQ2: Findings

F2.1 52% of the repositories declare two DB tech-
nologies and 47% contain DBs from two distinct
categories. Half of the repositories are mono-
technology/-category.

F2.2 Some microservices repositories also declare sev-
eral DBs belonging to the same DB category.

F2.3 The DB categories practitioners combine the most
(in pairs, trios, and all together) are Relational,
Key-Value, Document, and Search, associated ac-
cording to several different and non-transitive pat-
terns.

F2.4 There are empty association patterns (e.g., Docu-
ment, Search, and Column) that should be investi-
gated further.

F2.5 In most cases, niche DBs are associated with a
mainstream one (12.34%) and rarely with other
niche DBs (0.37%).

F2.6 The most popular DB technology associations are
PostgreSQL with Redis for duos, PostgreSQL, Re-
dis, Elasticsearch for trios, and PostgreSQL, Redis,
MongoDB, and Elasticsearch for quartets.

3.3. RQ3: Microservices Complexity & Databases

To analyze the complexity of microservices and their DBs,
we compute the number of services (excluding DBs) declared
in the Docker Compose file(s). We create scatter plots com-
paring the number of services (x-axis) with the number of DB
technologies, in Figure 0] and categories, in Figure [I0] on the
y-axis. We use the number of services within a microservices
architecture as a proxy measure of complexity. We estimate
the slope of the linear regression and plot the corresponding
regression lines to identify trends and explore the potential re-
lationship between microservice complexity (x-axis) and DB

(y-axis).

Repositories
Regression Line

20

databases technologies

services

Figure 9: Comparison of the number of services and the number of DB tech-
nologies in microservices.

Repositories
Regression Line

databases categories

o
n
=3
S
N
=3
S
o
=3
S]

services

Figure 10: Comparison of the number of services and the number of DB cate-
gories in microservices.

We also perform a Student’s t-test to assess whether the slope
differs significantly from zero. The null hypothesis assumes no
linear relationship (i.e., a slope of zero). We consider the null
hypothesis rejected if the resulting p-value is less than or equal
to 0.05, indicating statistical significance. In our case, the linear
regressions suggest that the more services there are, the more
DBs there are. Results are confirmed as statistically significant
(p-value < 0.05).

Following the same approach, we analyze another perspec-
tive with a different complexity proxy. We compare the disk
size of each repository (x-axis) with the number of DB tech-
nologies in Figure [T1] and categories in Figure [T2] (y-axis).
Larger microservices architectures tend to have more DBs in
a statistically significant way (p-value < 0.05).

The two complexity proxies we used agree on indicating the
complexity of a microservices architecture as linked to the num-
ber of DBs it contains.

To complement this observation with concrete examples, we
analyze the popular DB technologies and categories in projects
that the considered proxies identify as complex. We select 61
projects among the 1,005 that have at least 80 MB in size, 20
services, and 2 DBs.

The popular technologies differ slightly from those found
across the entire dataset (see RQ1). The top 5 are Redis, Post-
greSQL, MySQL, Elasticsearch, and MongoDB.

Repositories
20 - Regression Line

databases technologies

0 500,000 1,000,000

size (in KB)

Figure 11: Comparison of the repository size on disk and the number of DB
technologies in microservices.

Repositories

Regression Line

databases categories

0 500,000

1,000,000

size (in KB)

Figure 12: Comparison of the repository size on disk and the number of DBs
categories in microservices

Redis overtakes PostgreSQL as the most used DB, indicat-
ing a shift from Relational to Key-Value in complex architec-
tures, likely due to increased caching needs. Elasticsearch sur-
passes MongoDB, highlighting the growing role of Search DBs
in complex scenarios.

At the category level, the distribution remains similar to the
overall dataset, with Relational DBs still offering the most di-
verse technology options.

RQ3: Findings

F3.1 The complexity of a microservices architecture in
terms of number of services is correlated both with
the number of DB technologies and categories.

F3.2 The number of DBs and DB categories is dependent
from the size of microservices architectures.

F3.3 Relational DBs are still prevalent, regardless of the
complexity of microservices architectures.

F3.4 In the most complex systems, DB technologies are
in a different order of popularity than in the com-
plete dataset. Redis is more popular than Post-
gres in complex systems and Elasticsearch is above
MongoDB.

3.4. RQ4: Microservices Age and Databases

The results presented in the following scatter plots show the
relation between the age of a repository (x-axis) and its number
of DB technologies in Figure [I3] and categories in Figure [I4]
(y-axis).

Repositories
—— Regression Line

20

15

10

databases technologies

0 5 10

age (in years)

Figure 13: Age vs. number of DB technologies.

Repositories
Regression Line

3 0000 0OGOODS

databases categories

2 900000000000

1 9000000000000

0 5 10 15

age (in years)

Figure 14: Age vs. number of DB categories.

We estimate the slope, draw the regression lines, and per-
form the Student’s t-test to derive the p-value. Results indicate
that we cannot reject the null hypothesis and thus we cannot
conclude statistically significant correlations (p-value > 0.05)
between the age of the repositories and the number of DB tech-
nologies and categories used.

We conduct complementary investigations to identify the 5
most popular DB technologies and categories according to two
age groups.

We analyze the oldest (13 years or more) and the most re-
cent (2 years or less) microservices we collected. PostgreSQL,
MySQL, Redis, and MongoDB are the most used in both age
groups (although in a different order). Among the oldest, the
top 3 are Relational. In contrast, we observe a more diverse dis-
tribution in newer projects, with the introduction of Key-Value
and Document DBs. While MariaDB is more popular among
older projects, Elasticsearch has taken its place in the top 5 for
newer projects, confirming a clear shift.

10

RQ4: Findings

F4.1 No conclusion can be drawn regarding a correla-
tion between the age of a microservices architecture
and the heterogeneity of its DBs.

F4.2 Microservices shifted from Relational DBs of older
architectures (PostgreSQL, MySQL, and MariaDB
as the top 3 technologies), to Key-value, Docu-
ment and Search categories, with Redis, MongoDB,
and Elasticsearch leading in popularity in younger

projects (less than 2 years old) after PostgreSQL.
F4.3

The relational model remains predominant al-
though it is now 5 times less present in the most

recent microservices.

4. Implications and Recommendations

In this section we analyze the implications of the presented
results for the state of practice. We compare our findings with
previous literature to highlight up-to-date recommendations for
practitioners.

4.1. Database Usage and Prevalence in Microservices

Relational and Document DB categories are expected to be
prevalent in microservices due to their popularity in monolithic
architectures and their ability to manage structured and semi-
structured data [3 18]. Document and Key-Value DBs are com-
mon due to their flexibility and adaptability to the dynamic
nature of microservices [3]]. Search DBs are also expected to
be used, fulfilling a specific role in microservices that require
search capabilities [3} |8]. We confirm the popularity of these
four categories, noting that Key-Value DBs are way more pop-
ular (42.09%) than Document DBs (25.77%). This is a key
difference with respect to what has been found for general soft-
ware [8]]. Our work also highlights how Column and Time Se-
ries DBs are important for microservices architectures, given
the fact that these categories are present in tens of repositories
(respectively, ranking 5th and 6th in the top 10).

In terms of technologies, PostgreSQL, MySQL, SQL Server,
Redis, MongoDB, and Elasticsearch are expected to be among
the most commonly used DB technologies [3l |8]]. Our results
confirm their popularity, now reporting them in a ranking dedi-
cated to microservices.

Adding to this picture, MariaDB, etcd, Cassandra, and In-
fluxDB are also part of the top 10 most popular technologies,
while previously they were flying under the radar. There are
“safe” choices that, by general consensus, are preferable. We
can refer to the top technology in each category including Post-
greSQL for Relational DBs, Redis for Key-Value, MongoDB
for Document, Elasticsearch for Search, Cassandra for Column,
InfluxDB for Time Series, Milvus for Vector, EventStoreDB for
Event, Neo4;j for Graph, and PostGIS for Spatial DBs.

Regarding less common and specialized DB technologies,
they are expected to address specific requirements within mi-
croservices, as encouraged by the architectural style [3]. Our
results reveal the specific DB technologies selected for such
niche goals. Examples include EventStoreDB, Neo4j, and Post-
GIS.

R1.1 Variety training. Microservices practitioners
should be aware of the variety of DB categories and
technologies commonly used in such architectures.
Training on Relational, Key-Value, Document, and
Search DBs is still essential.

R1.2 Niche awareness. Microservices developers
should be aware of specific DB categories address-
ing niche goals, such as Column, Time Series, Vec-

tor, Event, Graph, or Spatial DBs.

R1.3 Popularity consideration. Microservices de-
velopers’ training should include popular tech-
nologies like PostgreSQL, MongoDB, Elastic-
search, and eventually Cassandra, InfluxDB, Mil-

vus, EventStoreDB, Neo4j, and PostGIS.

R1.4 Technology vs. principles. In some categories
(e.g., Event, Graph, Spatial), knowledge of the most
popular technology is enough to guarantee direct
applicability in most cases, while for other (e.g.,
Relational), knowledge of the underlying principles
can improve “knowledge portability” with respect

to the many alternative technologies.

4.2. Database Associations in Microservices

Regarding DB associations in microservices, practitioners
often combine multiple technologies and typically at least two
distinct categories [3]. Our results confirm this degree of het-
erogeneity on technologies. 52% of the selected repositories
declare two DB technologies, with 47% from two distinct cat-
egories. Nevertheless, the remaining half does not embrace
polyglot persistence, declaring only a single technology and
category. Surprisingly, some microservices repositories declare
several DBs belonging to the same category. These are inter-
esting candidates for future studies on the role and evolution of
co-existing technologies that our dataset provides.

The association of Relational and Document DBs together
has been previously found to be prevalent [3,8]]. Some reposito-
ries also integrate with them Key-Value and Search-based DBs,
all simultaneously [3} [8]].

We pointed out the various patterns in the associations among
these categories. Other associations with niche DBs concern
only a few microservices. While DB categories are more com-
monly combined in pairs or trios, there exist repositories with-
out any Relational, Key-Value, and Document DBs (i.e., the top
3 categories). There is an interesting and unexpectedly empty
association pattern concerning the combination of Document,
Search, and Column categories that deserves further attention.

11

In the literature, associations among PostgreSQL, Mon-
goDB, Redis, and Elasticsearch, have been found to occur more
frequently [3,I8]]. Our analyses confirm this result. Instead, our
analyses highlight how niche categories (e.g., Vector, Event,
Graph, Spatial) are less commonly combined with each other.
Practitioners prefer to pair them with mainstream ones.

R2.1 Heterogeneity handling. Microservices practi-
tioners should handle the heterogeneity and asso-
ciation of DB technologies, especially among Rela-
tional, Key-Value, Document, and Search DBs, by
being able to master two or three categories at the
same time. Competence with a single specific DB is
often insufficient.

R2.2 Homogeneity acceptance. However; in about half
of the cases, homogeneity is observed. Microser-
vices architectures developers should also be pre-
pared for single-category and single-technology

scenarios, regardless of the polyglot persistence.

4.3. Microservices Complexity and Databases

Microservices tend to increase the technical complexity [6].
It is expected to positively correlate with the use of a greater
number of DB technologies [21} 22]]. For instance, microser-
vices network centrality derived from inter-service calls is
associated with the number of public methods and call fre-
quency [23]], reflecting the potential increase in data access and,
consequently, in the number of DBs. Our results confirm that
the number of services and the size of the project are correlated
with the number of DB categories and technologies.

In terms of technologies, complex architectures should favor
Document DBs for their flexibility in handling constraints and
Key-Value DBs for caching and performance optimization [3].
We found that in the most complex systems in our dataset, Re-
dis is over PostgreSQL and Elasticsearch is over MongoDB.
Nevertheless, Relational DBs remain very popular with multi-
ple alternatives. As a side effect, this gives to Redis the top spot
among the technologies.

R3.1 Complexity management. Practitioners con-
tributing to complex systems should be able to man-
age multiple DB technologies across different cate-
gories.

R3.2 Variety-induced gap. Although Relational DBs
are prevalent in general, the single most relevant
technology for practitioners is Redis.

4.4. Microservices Age and Databases

We analyzed the relationships between the age of the archi-
tecture and number of DB categories and technologies. Older
microservices are expected to accumulate more DBs [21] [22].

Our analyses show there is no statistically significant correla-
tion between the two metrics.

Regarding the popularity of specific categories over time,
trends suggest a slightly decreased reliance on Relational
DBs [8], [47]], especially in older microservices architectures
refactoring their codebase to leverage the newer technologies.

Our results confirm this scenario, with Relational DBs popu-
lar in older microservices (13 years or more) while Document,
Column, and Search DBs, are preferred in recent systems [3} 8],
[48 1491 50, 151].

R4.1 Cautious replacement. Microservices contribu-
tors should not discard, over time, Relational DBs
in favor of other “modern replacement” DBs, given
their deep-rooted popularity, even in microservices.

5. Threats to Validity

In this section, we discuss limitations and threats that may
affect the validity of our study and how we mitigated them.

5.1. Construct validity

Threats to construct validity concern the relation between
theory and observation. Our identification of microservice
repositories relied on heuristics such as keywords, program-
ming languages, and structural indicators. While these heuris-
tics were carefully designed, some false positives and negatives
may persist, potentially including non-microservices and ex-
cluding relevant repositories that do not explicitly match some
of the criteria.

To partially mitigate this threat, multiple conditions must be
satisfied for the repository to be included in the dataset, with
more emphasis on precision rather than recall, ensuring the
quality of our dataset as future benchmark.

Another threat is the implicit exclusion of DB technologies
that lack Docker images, as the presence of Docker files was
used as a distinguishing criterion. Although these exclusions
are limited and do not involve the most popular DBs, they may
still slightly affect the comprehensiveness of our results. The
historical perspective presented in RQ4 is based on a fixed snap-
shot and considers only the age of the repository computed from
the creation date. While this offers initial insights, a more fine-
grained analysis of the actual evolution history of repositories
would provide a better understanding of trends.

Finally, our analyses considered all DBs declared in Docker
Compose files, regardless of whether they were actively used
in the codebase. This could lead to the inclusion of unused or
“ghost” dependencies. A more in-depth approach, for example
leveraging static program analysis, would be necessary to con-
firm the actual usage of declared DBs in the application code.

12

5.2. Internal validity

Internal validity concerns how one can be confident on
claimed cause and effect relation. We do not claim any cau-
sation in our study. We analyze the (joint) usage of DB tech-
nologies in microservices applications, and assess possible cor-
relations with system complexity and age. Hence, this study is
not subjected to threats to internal validity.

5.3. External validity

External validity concerns the generalizability of findings be-
yond the study context. Our study considers different types of
projects in terms of application domain, size, complexity, pro-
gramming languages, and DB technologies. Although we en-
sured to collect an heterogeneous sample with respect to these
criteria, we only considered open-source projects and DB tech-
nologies in public GitHub repositories. These choices affect the
generalizability of our findings, yet our approach remains valid
and the insights pertinent in the context of industrial software
systems leveraging the same DBs.

5.4. Conclusion validity

Threats to conclusion validity concern the degree to which
the statistical conclusions about the claimed relationships are
reasonable. To reduce bias in results interpretation, we used
standard statistical methods such as linear regression, Student’s
t-test, and p-values.

5.5. Reliability validity

Reliability validity concerns factors that could cause an error
in data collection and analysis. To minimize potential threats to
reliability, we analyzed open-source projects publicly available
on GitHub and provided a replication package that contains our
dataset and all the scripts we used for our analyses.

6. Related Work

Most related studies focus on DBs or on microservices, but
separately. In this section, we review the relevant literature to
contextualize and position our work, emphasizing its contribu-
tion to bridging these two domains.

6.1. Databases

Curino et al. [24] propose an empirical study on DB schema
changes in real-world data-intensive open-source projects, fo-
cusing on Wikipedia as a case study. They highlight the chal-
lenges of maintaining and evolving such relational DBs and
provide observations based on 4.5 years or history and 171
revisions, culminating in 34 tables, 242 columns, and 700GB
of data. Their goal is to illustrate typical evolution scenarios
through types of changes, warn about common design errors,
and offer recommendations to researchers. This work repre-
sents a step towards a unified benchmark for researchers built
on a real, complex, and large case study.

In the same vein, Qiu et al. [25] empirically analyze the co-
evolution of relational DB schemas and related source code in
10 popular and large projects composed of over 160K revisions
collected from the Subversion version control system. They
demonstrate the high frequency of DB changes in the software
life cycle, their impact on the source code, and the types and
patterns of these changes, proposing a list of DB schema change
types.

Still focusing on relational DB schemas, Vassiliadis [26]]
studies the evolution profiles, i.e., the recurring activity pat-
terns in relational DB schema evolution. The author extracts
and analyzes the schemas of 195 open-source projects from Li-
braries.io. This work provides practitioners and researchers
with insights into evolution patterns to help them understand
and predict such phenomena.

Goeminne and Mens [27]] investigate the technical (co-)usage
of DB access frameworks and object-relational mappers. They
empirically analyze usage implications for 5 relational DB
frameworks in 3.7K open-source projects in GitHub. The
authors perform a survival analysis, observing combinations
and complementarities across frameworks, especially those in-
volving JDBC. They report that some technologies (e.g., JPA,
Spring) exhibit better survival rates.

Decan et al. [28] propose another empirical study on the use
of relational DB access technologies like JDBC, Hibernate, and
JPA in about 2.5K open-source Java GitHub projects. They per-
form a fine-grained analysis at file level, assessing technolo-
gies breakdown and the impact of their replacements on source
code.

Small to medium scale case studies fail to capture general
trends in a large, in-vivo population of real world applications.
Large studies, on the contrary, focus on a limited amount of
technologies, often in a single category, often relational, lacking
qualities of a broad spectrum overview like in our study.

On the NoSQL side, Gessert et al. [12]] compare several tech-
nologies, particularly for Key-Value, Document, and Column
store categories. They provide practitioners with a decision tree
to support choices based on functional and non-functional re-
quirements.

Davoudian et al. [[13] present a comprehensive survey on
various NoSQL technologies, including Key-Value, Column,
Document, and Graph DBs. They analyze these technolo-
gies from the perspectives of data models, consistency models,
data partitioning strategies, and the CAP theorem (Consistency,
Availability, and Partition tolerance). Their work includes both
academic and industrial examples, providing valuable insights
to assist practitioners in making informed decisions on which
technology to use.

Scherzinger and Sidortschuk [29] present an empirical study
on NoSQL DBs, analyzing 1.2K open-source Java projects
and their GitHub history. They confirm common practices in
schema-free data modeling and evolution scenarios.

These work focus on the new type of NoSQL DB categories
but lack the context of the preceding and still surviving tech-
nologies. As confirmed by our findings on the collected dataset,
including both SQL and NoSQL categories and technologies,
the former are still far from being overthrown or obsolete.

13

A first step in the direction of a comparison between old
and new is the work by Benats et al. [8]], unifying relational
and NoSQL data models in an empirical study investigating
the use of hybrid multi-DBs over time in different languages.
They consider 4 years of history across over 40K open-source
projects from Libraries.io. We compare their empirical study
with our findings (Section [)).

More recently, Paiva er al. [9] proposed an empirical study
encompassing all data models in 362 Java open-source projects
from GitHub. Studying the popularity and combinations of DB
technologies, their stability, migration patterns, and the role of
object-relational mappers, they provide insights to researchers
and practitioners for selecting appropriate DB technologies.

In the mobile domain, Lyu et al. [30] investigate local DBs
for Android by conducting an empirical study on 1,000 popular
apps from the Google Play Store. They provide an overview of
available technologies and their usage, identifying major prob-
lems and deriving recommendations for developers.

Our work compares the findings in microservices architec-
tures with the ones in generic software systems at large, high-
lighting similarities and differences specific to the microser-
vices domain.

6.2. Microservices

Brogi et al. [31] argue that previous works lack a refer-
ence dataset of open-source microservices projects, like a stan-
dardized benchmark. Thus, they propose user, 5 microser-
vices projects easy to set up for repeatable experiments. These
projects are developed ad hoc, according to 5 common require-
ments in microservices, as identified by the authors.

Rahman et al. [17] propose the first dataset including real-
world microservices open-source projects from GitHub. This
list of 62 projects contains monoliths migrated to microservices
or projects developed from scratch following the microservices
architecture.

In a follow-up work, d’Aragona et al. [18] enlarge this
dataset with 378 open-source projects from World of Code,
developed in several languages. They document each project
with additional data and insights helping researchers to select
the most appropriate items for their work. In comparison to
our work, the authors deliberately exclude the DBs from their
study, focusing only on the modular nature of the microservices
architectures of those systems.

Finally, Wang et al. [32] present a dataset of microservices
applications utilizing Spring Cloud. Their contribution aims to
complete previous works by suggesting complex fine-grained
metrics in order to understand bad code smells in microservices.

6.3. Microservices and Databases

Only works by Gan and Delimitrou [[14], Gan et al. [[15], and
Laigner et al. [33] propose, as benchmarks for researchers, mi-
croservices architectures repositories written in various popular
languages and with different DBs. They aim to provide stan-
dard baselines for their studies and subsequent research. In all
these cases, the intended benchmarks are comprised of a single
to a maximum of six “synthetic and prototypical” end-to-end
applications.

To the best of our knowledge, our empirical study is the
first to bring together over 1,000 open-source microservices
projects, in 11 different languages, to investigate their use of
DBs across a wide variety of technologies and categories, sur-
passing the previous works discussed above in either size of the
dataset or number and variety of considered DB technologies
and categories.

7. Conclusion

We presented an empirical study on DB usage in mi-
croservices, analyzing one thousand open-source projects from
GitHub developed in the last 15 years.

Our work addresses questions regarding the prevalence of
DB categories and technologies used in microservices. We in-
vestigated, from several perspectives, the way DBs are com-
bined in practice, observing recurrent patterns. We deepened
our observations with objective fine-grained metrics and high-
light relationships between different characteristics (e.g., com-
plexity vs. age).

Besides the “usual suspects”, we shed light on less common
DBs like Time Series, Vector, Event, Graph, and Spatial DBs
addressing niche goals. We highlighted a variety of Relational
technologies and, overall, a variety of DBs with up to 60 unique
technologies identified.

We show how microservices rely on heterogeneous DBs.
Half of them use multiple DB technologies across different DB
categories. Consequently, the other half uses a single technol-
ogy and a single category, with unclear implications on the
best strategy for database practitioners to prepare for a career
path involving microservices architectures. From our analyses
it emerges the large spectrum of combination patterns. Never-
theless, we try to pinpoint findings leading to practical observa-
tions and recommendations for practitioners. The 18 findings
and 9 recommendations we derive are the simplest yet faceted
representation of such a complex and heterogeneous reality.

Finally, we emphasize that larger microservices architectures
tend to leverage more and diverse DBs. We analyze how still
leading Relational DBs, shifting across the years, are now five
times less prevalent in microservices, to the profit of emerging
technologies such as Document, Key-Value, and Search DBs.

As a concluding remark, fundamental contributions of this
work are also the dataset and the systematic approach with
which we automatically built it. The published dataset is the
factual basis for the reflections presented in this work and con-
stitutes a sound starting point for future large scale research
endeavors. Our work supports researchers and practitioners in
understanding, evolving, and optimizing DB usage in microser-
vices architectures.

Replication package and dataset

To ensure transparency, verifiability, and reproducibility of
our work, all the artifacts resulting from our study are available
at: @ https://github.com/DatabaseEvolutionNudgel
nMicroservices/daim

14

This repository includes the MongoDB database with our
complete dataset (i.e., the list of GitHub repositories consid-
ered) and the scripts used to perform the analyses and to gener-
ate charts, tables, matrices, and metrics in the present work.

Acknowledgments

This work was supported by the SofinaBoé&l Fund for Educa-
tion and Talent; the Federation Wallonie-Bruxelles (FWB), as
part of the ARC project RAINDROP; and the Swiss National
Science Foundation (SNSF) through the project “FORCE”
(SNF Project No. 232141).

References

[1] C. Richardson, Microservices Patterns: with Examples in
Java, Simon and Schuster, 2018.

[2] S. Newman, Building Microservices, O’Reilly Media,
Inc., 2021.

[3] R. Laigner, Y. Zhou, M. A. V. Salles, Y. Liu, M. Kali-
nowski, Data management in microservices: State of the
practice, challenges, and research directions, VLDB En-
dowment 14 (13) (2021) 3348-3361. |[doi:10.14778/3
484224 .3484232.

[4] D. Abadi, A. Ailamaki, D. Andersen, P. Bailis, M. Bal-
azinska, P. A. Bernstein, P. Boncz, S. Chaudhuri, A. Che-
ung, A. Doan, L. Dong, M. J. Franklin, J. Freire,
A. Halevy, J. M. Hellerstein, S. Idreos, D. Kossmann,
T. Kraska, S. Krishnamurthy, V. Markl, S. Melnik,
T. Milo, C. Mohan, T. Neumann, B. C. Ooi, F. Ozcan,
J. Patel, A. Pavlo, R. Popa, R. Ramakrishnan, C. Re,
M. Stonebraker, D. Suciu, The Seattle report on database
research, Communications of the ACM 65 (8) (2022) 72—
79.!doi:10.1145/3524284.

[5] M. André, Automated database schema evolution in mi-
croservices, in: Proceedings of the International Confer-
ence on Very Large Data Bases (VLDB) PhD Workshop,

Vol. 3452, CEUR-WS, 2023, pp. 37-40.

[6] W. K. Assuncdo, J. Kriiger, S. Mosser, S. Selaoui, How do
microservices evolve? An empirical analysis of changes
in open-source microservice repositories, Journal of Sys-
tems and Software 204 (2023) 111788. doi:10.1016/

j.jss.2023.111788,

[7]1 A.Furda, C. Fidge, O. Zimmermann, W. Kelly, A. Barros,
Migrating enterprise legacy source code to microservices:
On multitenancy, statefulness, and data consistency, IEEE
Software 35 (3) (2018) 63-72. doi:10.1109/MS.2017.

440134612.

[8] P. Benats, M. Gobert, L. Meurice, C. Nagy, A. Cleve,
An empirical study of (multi-) database models in open-
source projects, in: Proceedings of the International Con-
ference on Conceptual Modeling (ER), Springer, 2021,

pp. 87-101. |do1:10.1007/978-3-030-89022-3_8,

https://github.com/DatabaseEvolutionNudgeInMicroservices/daim
https://github.com/DatabaseEvolutionNudgeInMicroservices/daim
https://doi.org/10.14778/3484224.3484232
https://doi.org/10.14778/3484224.3484232
https://doi.org/10.1145/3524284
https://doi.org/10.1016/j.jss.2023.111788
https://doi.org/10.1016/j.jss.2023.111788
https://doi.org/10.1109/MS.2017.440134612
https://doi.org/10.1109/MS.2017.440134612
https://doi.org/10.1007/978-3-030-89022-3_8

[9]

(10]

(11]

[12]

(13]

(14]

(15]

[16]

(17]

(18]

C. A. Paiva, R. Maximino, F. Paiva, R. A. Vieira, N. Es-
panha, J. F. Pimentel, I. Wiese, M. A. Gerosa, 1. Stein-
macher, L. Murta, V. Braganholo, Analyzing the adoption
of database management systems throughout the history
of open source projects, Empirical Software Engineering
30(3) (2025)71./doi:10.1007/s10664-025-10627-z.

U. M. Graetsch, R. Hoda, H. Khalajzadeh, M. Shahin,
J. Grundy, Managing technical debt in a multidisciplinary
data intensive software team: An observational case study,
Journal of Systems and Software 230 (2025) 112546.
doi:10.1016/j.jss.2025.112546.

N. Viennot, M. Lécuyer, J. Bell, R. Geambasu, J. Nieh,
Synapse: A microservices architecture for heterogeneous-
database web applications, in: Proceedings of the Euro-
pean Conference on Computer Systems (EuroSys), ACM,
2015, pp. 21:1-21:16. |doi:10.1145/2741948.274197
5.

F. Gessert, W. Wingerath, S. Friedrich, N. Ritter, NoSQL
database systems: A survey and decision guidance, Com-
puter Science-Research and Development 32 (2017) 353—
365.|doi:10.1007/s00450-016-0334-3.

A. Davoudian, L. Chen, M. Liu, A survey on NoSQL
stores, ACM Computing Surveys (CSUR) 51 (2) (2018)
1-43. doi:10.1145/3158661.

Y. Gan, C. Delimitrou, The architectural implications of
cloud microservices, IEEE Computer Architecture Letters
17 (2) (2018) 155-158. |[doi:10.1109/LCA.2018.283
9189.

Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi,
N. Katarki, A. Bruno, J. Hu, B. Ritchken, B. Jackson,
K. Hu, M. Pancholi, Y. He, B. Clancy, C. Colen, F. Wen,
C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa, R. Lin,
Z. Liu, J. Padilla, C. Delimitrou, An open-source bench-
mark suite for microservices and their hardware-software
implications for cloud & edge systems, in: Proceedings
of the International Conference on Architectural Support
for Programming Languages and Operating Systems (AS-
PLOS), ACM, 2019, pp. 3—18.|doi:10.1145/3297858.
3304013.

E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer,
D. M. German, D. Damian, The promises and perils of
mining GitHub, in: Proceedings of the Working Con-
ference on Mining Software Repositories (MSR), ACM,
2014, pp. 92-101. doi:10.1145/2597073.2597074.

M. I. Rahman, S. Panichella, D. Taibi, A curated dataset of
microservices-based systems, in: Joint Proceedings of the
Summer School on Software Maintenance and Evolution
(SSSME), CEUR-WS, 2019, pp. 1-9.

D. A. d’Aragona, A. Bakhtin, X. Li, R. Su, L. Adams,
E. Aponte, F. Boyle, P. Boyle, R. Koerner, J. Lee, F. Tian,
Y. Wang, J. Nyyssold, E. Quevedo, M. S. Rahaman, A. S.

15

(19]

(20]

(21]

(22]

(23]

[24]

(25]

[26]

(27]

Abdelfattah, M. Mintyld, T. Cerny, D. Taibi, A dataset
of microservices-based open-source projects, in: Proceed-
ings of the International Conference on Mining Software
Repositories (MSR), ACM, 2024, pp. 504-509. doi:
10.1145/3643991.3644890.

H. Borges, M. T. Valente, What’s in a GitHub star? Un-
derstanding repository starring practices in a social cod-
ing platform, Journal of Systems and Software 146 (2018)
112-129.|/d0i:10.1016/j.jss.2018.09.016.

M. Schmidt, The Sankey diagram in energy and material
flow management. Part IT: Methodology and current appli-
cations, Journal of Industrial Ecology 12 (2) (2008) 173—
185./doi:10.1111/3.1530-9290.2008.00015. x|

Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi,
C. Delimitrou, Seer: Leveraging big data to navigate the
complexity of performance debugging in cloud microser-
vices, in: Proceedings of the International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), ACM, 2019, pp. 19-33.
doi:10.1145/3297858.3304004.

J. Soldani, D. A. Tamburri, W.-J. Van Den Heuvel, The
pains and gains of microservices: A systematic grey liter-
ature review, Journal of Systems and Software 146 (2018)
215-232.|doi:10.1016/j.jss.2018.09.082.

A. Bakhtin, M. Esposito, V. Lenarduzzi, D. Taibi, Net-
work centrality as a new perspective on microservice ar-
chitecture, in: Proceedings of the International Confer-
ence on Software Architecture (ICSA), IEEE, 2025, pp.
72-83.1d0i:10.1109/ICSA65012.2025.00017.

C. A. Curino, H. J. Moon, L. Tanca, C. Zaniolo, Schema
evolution in Wikipedia: Toward a web information sys-
tem benchmark, in: Proceedings of the International Con-
ference on Enterprise Information Systems (ICEIS), IN-
STICC, 2008, pp. 323-332. doi:10.5220/0001713003
230332.

D. Qiu, B. Li, Z. Su, An empirical analysis of the co-
evolution of schema and code in database applications,
in: Proceedings of the Joint Meeting on Foundations of
Software Engineering (FSE), ACM, 2013, pp. 125-135.
doi:10.1145/2491411.2491431.

P. Vassiliadis, Profiles of schema evolution in free open
source software projects, in: Proceedings of the Inter-
national Conference on Data Engineering (ICDE), IEEE,
2021, pp. 1-12. doi:10.1109/ICDE51399.2021.000
08.

M. Goeminne, T. Mens, Towards a survival analysis of
database framework usage in Java projects, in: Proceed-
ings of the International Conference on Software Mainte-
nance and Evolution (ICSME), IEEE, 2015, pp. 551-555.
doi:10.1109/ICSM.2015.7332512.

https://doi.org/10.1007/s10664-025-10627-z
https://doi.org/10.1016/j.jss.2025.112546
https://doi.org/10.1145/2741948.2741975
https://doi.org/10.1145/2741948.2741975
https://doi.org/10.1007/s00450-016-0334-3
https://doi.org/10.1145/3158661
https://doi.org/10.1109/LCA.2018.2839189
https://doi.org/10.1109/LCA.2018.2839189
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1145/3643991.3644890
https://doi.org/10.1145/3643991.3644890
https://doi.org/10.1016/j.jss.2018.09.016
https://doi.org/10.1111/j.1530-9290.2008.00015.x
https://doi.org/10.1145/3297858.3304004
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1109/ICSA65012.2025.00017
https://doi.org/10.5220/0001713003230332
https://doi.org/10.5220/0001713003230332
https://doi.org/10.1145/2491411.2491431
https://doi.org/10.1109/ICDE51399.2021.00008
https://doi.org/10.1109/ICDE51399.2021.00008
https://doi.org/10.1109/ICSM.2015.7332512

(28]

(29]

(30]

(31]

(32]

(33]

A. Decan, M. Goeminne, T. Mens, On the interaction
of relational database access technologies in open source
Java projects, arXiv:1701.00416 (2017). |doi:10.48550
/arXiv.1701.00416l

S. Scherzinger, S. Sidortschuck, An empirical study on
the design and evolution of NoSQL database schemas, in:
Proceedings of the International Conference on Concep-
tual Modeling (ER), Springer, 2020, pp. 441-455. |doi:
10.1007/978-3-030-62522-1_33|

Y. Lyu, J. Gui, M. Wan, W. G. Halfond, An empirical
study of local database usage in Android applications, in:
Proceedings of the International Conference on Software
Maintenance and Evolution (ICSME), IEEE, 2017, pp.
444-455.'doi:10.1109/ICSME.2017.75.

A. Brogi, A. Canciani, D. Neri, L. Rinaldi, J. Soldani,
Towards a reference dataset of microservice-based appli-
cations, in: Proceedings of the International Conference
on Software Engineering and Formal Methods (SEFM),
Springer, 2017, pp. 219-229. doi:10.1007/978-3-319
-74781-1_16.

W. Yang, B. Song, Y. Xing, Y. Lyu, H. Cui, Z. Liang,
Z. Tu, A feature dataset of microservices-based systems,
in: Proceedings of the International Conference on Ser-
vice Science (ICSS), Springer, 2024, pp. 73-87. doi:
10.1007/978-981-97-5760-2_6,

R. Laigner, Z. Zhang, Y. Liu, L. F. Gomes, Y. Zhou, On-
line Marketplace: A benchmark for data management in
microservices, Proceedings of the ACM on Management
of Data 3 (1) (2025) 3:1-3:26. |doi:10.1145/3709653,

Web references

[34]

(35]

(36]

(37]

(38]

M. Fowler, Polyglot persistence, [Online; accessed 2025-
10-15] (2011).

URL https://martinfowler.com/bliki/Polyglo
tPersistence.html

J. Lewis, M. Fowler, Microservices, [Online; accessed
2025-10-15] (2014).

URL https://martinfowler.com/articles/micr
oservices.html

Red Gate Software Ltd, [DB-Engines ranking — Popu-
larity ranking of DBMS, [Online; accessed 2025-03-06]
(March 2025).

URL https://db-engines.com/en/ranking

Carnegie Mellon Database Group, Browse — Database of]
Databases, [Online; accessed 2025-03-06] (March 2025).
URL https://dbdb.io/browse

Wikipedia contributors, List of relational database man-
agement systems — Wikipedia, the free encyclopedia,
[Online; accessed 2025-10-15] (2025).

16

(39]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

URL https://en.wikipedia.org/w/index.php?t
itle=List_of_relational_database_managemen
t_systems&oldid=1277025704

Wikipedia contributors, Comparison of object database
management systems — Wikipedia, the free encyclope-
dia, [Online; accessed 2025-10-15] (2024).

URL https://en.wikipedia.org/w/index.php?t
itle=Comparison_of_object_database_managem
ent_systems&oldid=1238176727

Wikipedia contributors, Document-oriented database —
Wikipedia, the free encyclopedial, [Online; accessed 2025-
10-15] (2025).

URL https://en.wikipedia.org/w/index.php?t
itle=Document-oriented_database&oldid=12783
38966

Wikipedia contributors, [List of column-oriented DBMSes
— Wikipedia, the free encyclopedia, [Online; accessed
2025-10-15] (2024).

URL https://en.wikipedia.org/w/index.php?t
itle=List_of_column-oriented_DBMSes&oldid=1
241929445

Wikipedia contributors, List of in-memory databases —
Wikipedia, the free encyclopedia, [Online; accessed 2025-
10-15] (2025).

URL https://en.wikipedia.org/w/index.php?t
itle=List_of_in-memory_databases&oldid=1269
217579

Wikipedia contributors, NoSQL — Wikipedia, the free
encyclopedia, [Online; accessed 2025-10-15] (2025).
URL https://en.wikipedia.org/w/index.php?t
itle=NoSQL&0ldid=1277556972

Docker, Docker Hub container image library — App
containerization, [Online; accessed 2025-03-06] (March
2025).

URL https://hub.docker.com/

GitHub, GitHub REST API documentation — GitHub
docs, [Online; accessed 2025-10-15] (November 2022).
URL https://docs.github.com/en/rest?apiVer
sion=2022-11-28

GitHub, |Octoverse: Al leads Python to top language as
the number of global developers surges — The GitHub
Blog, [Online; accessed 2025-10-15] (October 2024).
URL https://github.blog/news-insights/octo
verse/octoverse-2024/

Red Gate Software Ltd, Historical trend of relational
DBMS popularity, [Online; accessed 2025-03-06] (May
2025).

URL https://db-engines.com/en/ranking_tren
d/relational+dbms

https://doi.org/10.48550/arXiv.1701.00416
https://doi.org/10.48550/arXiv.1701.00416
https://doi.org/10.1007/978-3-030-62522-1_33
https://doi.org/10.1007/978-3-030-62522-1_33
https://doi.org/10.1109/ICSME.2017.75
https://doi.org/10.1007/978-3-319-74781-1_16
https://doi.org/10.1007/978-3-319-74781-1_16
https://doi.org/10.1007/978-981-97-5760-2_6
https://doi.org/10.1007/978-981-97-5760-2_6
https://doi.org/10.1145/3709653
https://martinfowler.com/bliki/PolyglotPersistence.html
https://martinfowler.com/bliki/PolyglotPersistence.html
https://martinfowler.com/bliki/PolyglotPersistence.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://dbdb.io/browse
https://dbdb.io/browse
https://dbdb.io/browse
https://en.wikipedia.org/w/index.php?title=List_of_relational_database_management_systems&oldid=1277025704
https://en.wikipedia.org/w/index.php?title=List_of_relational_database_management_systems&oldid=1277025704
https://en.wikipedia.org/w/index.php?title=List_of_relational_database_management_systems&oldid=1277025704
https://en.wikipedia.org/w/index.php?title=List_of_relational_database_management_systems&oldid=1277025704
https://en.wikipedia.org/w/index.php?title=List_of_relational_database_management_systems&oldid=1277025704
https://en.wikipedia.org/w/index.php?title=Comparison_of_object_database_management_systems&oldid=1238176727
https://en.wikipedia.org/w/index.php?title=Comparison_of_object_database_management_systems&oldid=1238176727
https://en.wikipedia.org/w/index.php?title=Comparison_of_object_database_management_systems&oldid=1238176727
https://en.wikipedia.org/w/index.php?title=Comparison_of_object_database_management_systems&oldid=1238176727
https://en.wikipedia.org/w/index.php?title=Comparison_of_object_database_management_systems&oldid=1238176727
https://en.wikipedia.org/w/index.php?title=Comparison_of_object_database_management_systems&oldid=1238176727
https://en.wikipedia.org/w/index.php?title=Document-oriented_database&oldid=1278338966
https://en.wikipedia.org/w/index.php?title=Document-oriented_database&oldid=1278338966
https://en.wikipedia.org/w/index.php?title=Document-oriented_database&oldid=1278338966
https://en.wikipedia.org/w/index.php?title=Document-oriented_database&oldid=1278338966
https://en.wikipedia.org/w/index.php?title=Document-oriented_database&oldid=1278338966
https://en.wikipedia.org/w/index.php?title=List_of_column-oriented_DBMSes&oldid=1241929445
https://en.wikipedia.org/w/index.php?title=List_of_column-oriented_DBMSes&oldid=1241929445
https://en.wikipedia.org/w/index.php?title=List_of_column-oriented_DBMSes&oldid=1241929445
https://en.wikipedia.org/w/index.php?title=List_of_column-oriented_DBMSes&oldid=1241929445
https://en.wikipedia.org/w/index.php?title=List_of_column-oriented_DBMSes&oldid=1241929445
https://en.wikipedia.org/w/index.php?title=List_of_in-memory_databases&oldid=1269217579
https://en.wikipedia.org/w/index.php?title=List_of_in-memory_databases&oldid=1269217579
https://en.wikipedia.org/w/index.php?title=List_of_in-memory_databases&oldid=1269217579
https://en.wikipedia.org/w/index.php?title=List_of_in-memory_databases&oldid=1269217579
https://en.wikipedia.org/w/index.php?title=List_of_in-memory_databases&oldid=1269217579
https://en.wikipedia.org/w/index.php?title=NoSQL&oldid=1277556972
https://en.wikipedia.org/w/index.php?title=NoSQL&oldid=1277556972
https://en.wikipedia.org/w/index.php?title=NoSQL&oldid=1277556972
https://en.wikipedia.org/w/index.php?title=NoSQL&oldid=1277556972
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://docs.github.com/en/rest?apiVersion=2022-11-28
https://docs.github.com/en/rest?apiVersion=2022-11-28
https://docs.github.com/en/rest?apiVersion=2022-11-28
https://docs.github.com/en/rest?apiVersion=2022-11-28
https://github.blog/news-insights/octoverse/octoverse-2024/
https://github.blog/news-insights/octoverse/octoverse-2024/
https://github.blog/news-insights/octoverse/octoverse-2024/
https://github.blog/news-insights/octoverse/octoverse-2024/
https://github.blog/news-insights/octoverse/octoverse-2024/
https://db-engines.com/en/ranking_trend/relational+dbms
https://db-engines.com/en/ranking_trend/relational+dbms
https://db-engines.com/en/ranking_trend/relational+dbms
https://db-engines.com/en/ranking_trend/relational+dbms

(48]

[49]

(50]

[51]

Red Gate Software Ltd, Historical trend of document
DBMS popularity, [Online; accessed 2025-03-06] (May
2025).

URL https://db-engines.com/en/ranking_tren
d/document+store

Red Gate Software Ltd, Historical trend of key-value
DBMS popularity, [Online; accessed 2025-03-06] (May
2025).

URL https://db-engines.com/en/ranking_tren
d/key-value+store

Red Gate Software Ltd, Historical trend of wide column
DBMS popularity, [Online; accessed 2025-03-06] (May
2025).

URL https://db-engines.com/en/ranking_tren
d/wide+column+store

Red Gate Software Ltd, Historical trend of search DBMS
popularity, [Online; accessed 2025-03-06] (May 2025).
URL https://db-engines.com/en/ranking_tren
d/search+engine

17

https://db-engines.com/en/ranking_trend/document+store
https://db-engines.com/en/ranking_trend/document+store
https://db-engines.com/en/ranking_trend/document+store
https://db-engines.com/en/ranking_trend/document+store
https://db-engines.com/en/ranking_trend/key-value+store
https://db-engines.com/en/ranking_trend/key-value+store
https://db-engines.com/en/ranking_trend/key-value+store
https://db-engines.com/en/ranking_trend/key-value+store
https://db-engines.com/en/ranking_trend/wide+column+store
https://db-engines.com/en/ranking_trend/wide+column+store
https://db-engines.com/en/ranking_trend/wide+column+store
https://db-engines.com/en/ranking_trend/wide+column+store
https://db-engines.com/en/ranking_trend/search+engine
https://db-engines.com/en/ranking_trend/search+engine
https://db-engines.com/en/ranking_trend/search+engine
https://db-engines.com/en/ranking_trend/search+engine

	Introduction
	Research Methods
	Research Questions
	Database Categories and Technologies
	GitHub Repositories and Microservices

	Results
	RQ1: Database Usage in Microservices
	RQ2: Database Associations in Microservices
	RQ3: Microservices Complexity & Databases
	RQ4: Microservices Age and Databases

	Implications and Recommendations
	Database Usage and Prevalence in Microservices
	Database Associations in Microservices
	Microservices Complexity and Databases
	Microservices Age and Databases

	Threats to Validity
	Construct validity
	Internal validity
	External validity
	Conclusion validity
	Reliability validity

	Related Work
	Databases
	Microservices
	Microservices and Databases

	Conclusion

