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Abstract

Microservices architectures are an integral part of modern software development. Their adoption brings significant changes to

database management. Instead of relying on a single database, a microservices architecture is typically composed of multiple,

smaller, heterogeneous, and distributed DBs. In these data-intensive systems, the variety and combination of database categories

and technologies play a crucial role in storing and managing data. While data management in microservices is a major challenge,

research literature is scarce.

We present an empirical study on how databases are used in microservices. On the dataset we collected (and released as open

data for future research), considering 15 years of microservices, we examine ca. 1,000 GitHub projects that use databases selected

among 180 technologies from 14 categories. We perform a comprehensive analysis of current practices, providing researchers and

practitioners with empirical evidence to better understand database usage in microservices. We report 18 findings and 9 recom-

mendations. We show that microservices predominantly use Relational, Key-Value, Document, and Search databases. Notably,

52% of microservices combine multiple database categories. Complexity correlates with database count, with older systems fa-

voring Relational databases and newer ones increasingly adopting Key-Value and Document technologies. Niche databases (e.g.,

EventStoreDB, PostGIS), while not widespread, are often combined with a mainstream one.

1. Introduction

Microservices architectures have significantly gained popu-

larity, becoming an integral part of the software development

landscape. This architectural style is now widely adopted by

large and software-intensive companies like Amazon, Google,

and Netflix [1, 2].

Their adoption brings significant changes to database (DB)

management [3, 4, 5, 6]. According to the literature, the mi-

croservices architecture paradigm, which promotes the decom-

position of a system into loosely coupled, independent, het-

erogenous, and manageable services, is expected to naturally

extend to DBs [6]. Specifically, each microservice is expected

to have its own dedicated DB(s) following the database server

per microservice pattern [3], ensuring data autonomy and min-

imizing dependencies. This is aligned with the polyglot persis-

tence [34, 35]. In these data-intensive systems, the large vari-

ety and combination of DB categories and technologies play

a crucial role in storing and managing data. Depending on

the requirements, the main motivations concern, for instance,

the need for independent schema evolution, data caching, data

replication, data partitioning, decentralized data management,

etc. These mechanisms aim to reduce coupling and ease main-

tenance and evolution [3].
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Although a few existing studies recognize that data manage-

ment in microservices is a major challenge [7, 3], it received

little attention in the research literature. Current works lack

concreteness, especially regarding the available datasets and in-

depth empirical investigations that highlight the current status.

In particular, the variety and numerous combinations of DB cat-

egories and the specific technologies and their implementations,

across multiple heterogeneous microservices, often require pre-

cise justifications to understand the underlying reasons emerg-

ing from the community trends. Indeed, despite the growing

adoption of microservices architectures, there is still a notice-

able gap and a lack of benchmarks in the literature [3] regarding

how microservices practitioners reason and handle data man-

agement in vivo. Existing studies [3, 8, 6, 9, 10] confirm a trend

in the adoption of multiple DBs in modern software, such as

the combination of relational and document DBs, the use of a

cache layer, and the exploitation of search-based mechanisms.

Some conclude that a poor understanding of data management

practices, such as technology combinations, could lead to the

introduction of a technical data debt [10]. To fill this gap, con-

crete observations on the state of the practice could be useful to

practitioners, teachers, and students, helping them to make the

right technical choices.

We present an empirical study on how DBs are used in mi-

croservices. Considering 15 years of history, from 2010 to

2025, we examine ca. 1,000 open-source projects mined from

GitHub that use DBs selected among 180 technologies (e.g.,

PostgreSQL, Redis, MongoDB) from 14 categories (e.g., Rela-

tional, Key-Value, Document).
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We perform a comprehensive analysis providing insights into

current practices, emphasizing the most prevalent DBs used in

microservices. We also investigate the way they are combined

in practice, observing recurrent patterns. We support our obser-

vations with objective, fine-grained metrics and highlight rela-

tionships between characteristics (e.g., complexity vs. age).

Our study leads to 18 findings about DB usage in microser-

vices, with a two-fold implication. First, on the industry and

open-source side, our work helps practitioners to understand the

latest trends and, thanks to the 9 recommendations we derive,

to select the most appropriate data storage strategies in their

projects. Second, on the research side, it guides researchers in

shaping future directions based on empirical evidence and an

open-source dataset.

2. Research Methods

We describe the research methods we employed to conduct

our empirical study. We present our research question, the ini-

tial list of considered DBs and technologies, and the methodol-

ogy we followed to collect and analyze the data from GitHub

repositories.

2.1. Research Questions

We aim to answer the following research questions (noted

RQ*) to understand how DBs are used in microservices:

• RQ1: What database categories and technologies are used

in microservices, and how prevalent are they? From the

open-source microservices collected, we analyze the DB de-

pendencies, establish their distribution, and assess the most

popular DB categories (e.g., Relational, Document, Key-

Value, Column, Graph) and technologies (e.g., PostgreSQL,

MongoDB, Redis).

• RQ2: How are databases combined in microservices, and

what are the characteristics of those combinations? We

analyze the DB categories and technologies associations in

microservices, their breakdown as stated in dependencies,

and determine the most popular combinations, exploring

further recurrent patterns and computing relevant metrics.

• RQ3: What is the relationship between the complexity of mi-

croservices and their data management strategy? We seek

to understand whether the complexity (e.g., number of ser-

vices, size of the project) is correlated with the number of

DB technologies, whether the complexity is linked to a cer-

tain degree of category associations, or whether some cat-

egory associations are more suitable for projects of certain

complexity.

• RQ4: What is the relationship between the age of microser-

vices and their database choices? We consider the age of

microservices and aim to find rationales in their DB choices,

to recommend different strategies for older and more recent

projects.

2.2. Database Categories and Technologies

Table 1 lists the DB categories considered in our study. We

extracted them from DB-Engines’ March 2025 ranking [36],

considering the top 250 DB management systems (DBMSs).

The exhaustive list of DB technologies is available in our repli-

cation package (Section 7).

Table 1: DBMS categories considered in our study.

Category Example DBMS

Relational Oracle, MySQL, MS SQL Server, PostgreSQL

Document MongoDB, Couchbase, CouchDB

Key-Value Redis, Memcached, etcd

Column Cassandra, HBase, ClickHouse

Graph Neo4j, GraphDB

Time Series InfluxDB, kdb+, TimescaleDB

Vector Pinecone, Milvus, Qdrant, Chroma, Weaviate

Spatial PostGIS

Hierarchical IBM IMS

Network IDMS

Object Actian, db4o, ObjectDB

Event EventStoreDB

Search Elasticsearch, Splunk, Solr

Others Amazon DynamoDB, Aerospike

Since the presence as a Docker container is a distinction cri-

terion (see Section 2.3), we excluded DB technologies unavail-

able as Docker images (e.g., Microsoft Access, FileMaker).

Following the methodology of Paiva et al., we also excluded

warehouses (e.g., Snowflake, Databricks, Apache Hive, Google

BigQuery), frameworks (e.g., Apache Flink), services (e.g.,

Amazon Aurora, Prometheus), and platforms (e.g., Google

Firebase, Google Firestore, Microsoft Azure Table Store) [9].

In the end, we considered a total of 180 technologies.

DBs are categorized by type (Relational, Document, Key-

Value, Column, Graph, Time Series, Vector, Spatial, Hierar-

chical, Network, Object, Event, Search Engine) and ranked by

popularity according to DB-Engines. Information and clas-

sifications were cross-verified through the literature [11, 12,

13, 14, 15, 3, 8, 9] and online sources such as Database of

Databases [37] and Wikipedia [38, 39, 40, 41, 42, 43].

For each DB, the first category is considered to be the main

one. Less common, ambiguous, or multi-type DBs (e.g., Native

XML, RDF), are grouped under the ªOthersº category. Each

DB is associated with a regular expression (RE) to identify

its corresponding Docker image, if available. REs, verified on

Docker Hub [44], are included in our replication package.

2.3. GitHub Repositories and Microservices

We mined GitHub using its REST (REpresentational State

Transfer) API (Application Programming Interface) [45] to col-

lect microservices project repositories that use DBs. Min-

ing repositories is valuable for researchers seeking up-to-date

real-world systems to evaluate their approaches and tools [16].

Benchmarks and datasets specifically studying microservices

and DBs are limited in the literature [17, 18]. There are sev-

eral challenges to be addressed to obtain a good benchmark.
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Figure 1: The mining process for extracting microservices with DBs from GitHub.

First, it is not straightforward to identify a GitHub reposi-

tory belonging to a system that adheres to a microservices ar-

chitecture, as they can follow various organizational structures,

such as mono-repositories (a.k.a. mono-repo) [6] or multi-

repositories (a.k.a. multi-repo). Additionally, documentation

that lists and describes all the microservices within a given ar-

chitecture is often unavailable, further complicating the mining

process. When examining a specific repository, there is rarely

a clear and explicit indication that it belongs to a microservices

architecture. Sometimes, terms like ªmicroserviceº might help,

but other associated terms like ªREST APIº can also be ob-

served in titles, tags, descriptions, or README files, either at

the top level of the architecture or at sub-levels representing

parts of the architecture. Since a microservice is modular and

distributed, it can be difficult to scope. Some components can

be spread, isolated in other locations, without any clear links.

The heterogeneity of implementations affects the automation

capabilities of mining such repositories. These challenges of-

ten lead to noisy or incomplete results. Current benchmarks

commonly require manual annotation, which slows down the

process and limits the number of results included and analyzed.

To address these challenges, we propose a mining process that

combines several fine-grained filters and heuristics to reduce the

difficulty of characterizing microservices repositories and pro-

vide a large benchmark dataset of microservices architectures.

The mining process is depicted in Figure 1. To ensure the re-

producibility of our research, the source code and the complete

benchmark dataset are available in our replication package.

1 Filter. Since GitHub may host private and inactive

projects [16, 8, 9], we applied six filtering criteria to efficiently

narrow down our search from 121 million repositories. The aim

was to identify the relevant ones that are active real-world sys-

tems. After filtering we retained 140,000 repositories based on:

1. Disk Size: To eliminate outliers and retain repositories with

meaningful content, we filtered them based on disk size [8].

We selected those with a size between 500 KB and 1 GB.

2. Stars Count: To retain relevant repositories by popular-

ity, we applied a filtering criterion based on the number of

stars [19]. We set the threshold to at least 100 stars.

3. Commit History: To target real and actively maintained

systems, we retained only repositories with at least 100

commits, inspired by the work of d’Aragona et al. [18].

4. Structural Completeness: To remove placeholders and

projects without the basic level of documentation encour-

aged on GitHub, we included only repositories with at least

one README file and at least two directories [16].

5. Recent Updates: We focused on repositories that are likely

to follow modern microservices practices by selecting only

those updated after January 1, 2015. This date is often con-

sidered to mark the widespread adoption of microservices

architectures [35].

6. Programming Languages: We targeted repositories writ-

ten in popular programming languages, particularly those

frequently used in microservices development [14, 15, 17,

18], [46]. The selected languages include C, C++, C#, Go,

Java, JavaScript, PHP, Python, Ruby, Scala, and TypeScript.

2 Enrich. To better identify microservices repositories,

we enrich the dataset with additional information. Using

the GitHub API, we retrieve the content of README files,

which often contain keywords and valuable project details,

as well as Docker Compose files,1 commonly used to define

multi-container environments typical of microservices architec-

tures [6, 18].

3 Distinguish. Based on the enriched dataset, we deepen the

filtering process targeting repositories likely to be microser-

vices. We define a number of heuristics to compute a score for

each repository. The higher the score, the more likely the repos-

itory is a microservice. The heuristics are based on the presence

of keywords in the repository, the number of specific files and

directories, the presence and content of README and Docker

Compose files, and the number of services and DBs declared in

the Docker Compose files.

The keywords are the following variants: microservice,

micro-service, micro service, microservices, micro-services,

micro services. In addition, we add keyword variants about

the different organizational structures: monorepo, mono-repo,

multirepo, multi-repo. Finally, the rest api keyword aims to in-

clude the parts of microservices architectures that are outside

the scope of a single repository and are intended to be served as

external APIs for other services.

We compute the score based on the following heuristics:

• A keyword is featured in the title, the description, the repos-

itory topics, the contents of the README files.

• A keyword is featured in at least a directory, a file, a Docker

Compose file.

• The repository Docker Compose files declare at least one

service or one DB.

• The repository counts more services than DBs.

1https://docs.docker.com/compose/
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Figure 2: DB technologies utilized in microservices, colored by category.
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Figure 3: DB technologies utilized in microservices, colored and grouped by category.

These heuristics aim to compute a likelihood score for a

repository to have a microservices architecture. All heuristics

are assessed independently.

Once the score is computed, in order to flag the repository as

a microservices architecture, it must satisfy all of the following

conditions:

• The score is (strictly) greater than 0.

• The Docker Compose files declare at least one service.

• The repository contains at least one keyword in the title,

description, topics, or README files.

• The Docker Compose files declare at least one DB.

• The repository counts more services than DBs.

We found 1,005 repositories that are likely to be microser-

vices. We stored them in a DB containing, for each reposi-

tory: GitHub ID, GitHub URL, git branch, owner username,

repository title, repository description, GitHub associated top-

ics, creation date, last updated date, disk size, star count, com-

mit count, contributor count, directory count, service directo-

ries list, service files list, README files and their content,

Docker Compose files and their content, service count based on

the Docker Compose files, DB list based on the ones declared

in the Docker Compose files, and programming languages list.

The DB dump is available in our replication package.

3. Results

3.1. RQ1: Database Usage in Microservices

We compute the distribution of DB technologies and cate-

gories across all repositories. For each technology, we count

the number of repositories declaring it in their Docker Com-

pose files. In Figure 2, we present the DB technologies (x-axis)

we found in our dataset, sorted by popularity (i.e., number of

repositories that use them, y-axis). In Figure 3, we grouped

them by DB category.

Among the 1,005 repositories in our dataset, a total of 60 dis-

tinct DB technologies are identified out of the 180 considered,

highlighting significant heterogeneity with 11 different DB cat-

egories.
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The most popular DB categories are Relational, Key-Value,

Document, and Search. As reported in Table 2, Relational

DBs appear in 71.64% of repositories, followed by Key-Value

DBs in 42.09%, Document DBs in 25.77%, and Search DBs in

16.32%.

Table 2: Distribution of DB categories in microservices.

Category Count % Category Count %

Relational 720 71.64% Time Series 38 3.78%

Key-Value 423 42.09% Vector 19 1.89%

Document 259 25.77% Event 15 1.49%

Search 164 16.32% Graph 10 1.00%

Column 50 4.98% Spatial 8 0.80%

Others 14 1.39%

A repository is counted in a category if it has at least one

technology from it. Relational DBs also dominate in terms

of the number of distinct technologies (12), followed by Key-

Value DBs (8), Document DBs (6), and Search DBs (6). At

the other side of the spectrum we find the Spatial DBs category,

with a single technology (PostGIS).

Among our collected data, some categories and technologies

cannot be found. Notably, no Hierarchical, Network, or Object

DBs are identified in microservices. Table 3 shows the distri-

bution of the top 10 most popular DB technologies.

Table 3: Top 10 DB technologies used in microservices.

Technology Category Count Percentage

PostgreSQL Relational 498 49.55%

Redis Key-Value 390 38.81%

MySQL Relational 242 24.08%

MongoDB Document 242 24.08%

Elasticsearch Search 139 13.83%

MariaDB Relational 82 8.16%

Microsoft Sql Server Relational 63 6.27%

etcd Key-Value 39 3.88%

Apache Cassandra Column 30 2.99%

InfluxDB Time Series 27 2.69%

For the Relational category, PostgreSQL and MySQL dom-

inate, with 49.55% and 24.08% of repositories, respectively.

Redis, for Key-Value DBs, is present in 38.81% of reposito-

ries. MongoDB brings the top Document DB technology on

par with the second most popular in the Relational category,

with 24.08%.

Table 4 summarizes the most popular DB technology of each

category and its in-category percentage (i.e., popularity within

the category).

PostgreSQL is chosen 69.17% of the times when Relational

DBs are needed. With MySQL, they almost have a monopoly

on Relational DBs. In Key-Value and Document DBs, Redis

and MongoDB cover 92.20% and 93.44% respectively, mak-

ing them almost a de facto standard, save for a few excep-

tions. Elasticsearch occupies 84.76% of the Search landscape.

Apache Cassandra concerns 60.00% of Column DBs and, for

Time Series DBs, InfluxDB is present in 71.05% of cases. They

Table 4: Most popular DB technology for each category.

Category Technology Count Percentage

Relational PostgreSQL 498 69.17%

Key-Value Redis 390 92.20%

Document MongoDB 242 93.44%

Search Elasticsearch 139 84.76%

Column Apache Cassandra 30 60.00%

Time Series InfluxDB 27 71.05%

Event EventStoreDB 15 100.00%

Graph Neo4j 10 100.00%

Vector Milvus 9 47.37%

Spatial PostGIS 8 100.00%

are popular alternatives but not the only option in their respec-

tive categories. On the contrary, while EventStoreDB, Neo4j,

and PostGIS are not widespread, they have almost no alterna-

tives in their respective categories. Finally, Milvus and Qdrant

are similarly popular alternatives for Vector DBs.

RQ1: Findings

F1.1 Four different categories of technologies are

widespread in microservices architectures (Rela-

tional, Key-Value, Document, and Search).

F1.2 Relational DBs are still prevalent, by a large mar-

gin, with multiple popular alternative technologies.

F1.3 Specific DB categories, despite their niche appli-

cations, should not be overlooked. For example,

Graph and Spatial DBs, while addressing special-

ized needs, are utilized in 10 and 8 repositories re-

spectively, indicating their relevance.

F1.4 For most categories, there is a specific technology

which is the most widespread (e.g., Redis for Key-

Value, MongoDB for Document). Relational DBs

have a more varied ªfootprintº of popular tech-

nologies.

F1.5 Sixty unique DB technologies show that diversity is

preferred to one-size-fits-all DBs.

3.2. RQ2: Database Associations in Microservices

For each repository and each Docker Compose file, we in-

spect the declared DB technologies. Figure 4 presents the

repositories (rows) and the DB technologies used (columns).

The repositories are sorted by number of DB technologies and

the DBs by popularity (see RQ1). The cells are filled if the

repository declares the DB technology in one of its Docker

Compose files. Only the top 25 repositories are shown. A full

interactive version, allowing access to the DB declaration in

GitHub, is provided in the replication package.

Figure 5 (top) proposes an overview of the 1,005 repositories

(columns) and their DB categories (rows).
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Figure 4: Top 25 repositories sorted by number of DB technologies, colored by categories.
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Figure 5: Repositories and their DB categories overview (top). Zoom-in on the top 25 repositories sorted by number of DB technologies (bottom).
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The sorting of repositories and DBs remain the same. The

colored dots show the presence of the DB category in the repos-

itory. A zoom-in is done on the top 25 repositories in Figure 5,

bottom. A full version is available in the replication package.

The aim of these figures is to demonstrate the heterogeneity

of DBs in microservices and to highlight the most popular ones.

On the 1,005 repositories collected, we compute what we call

the database heterogeneity rate (DHR), which is the ratio be-

tween the number of microservices combining at least two DB

technologies (or categories) and the total number of microser-

vices. The DHR based on technologies is 0.52: Half of the

repositories mix two different technologies. The DHR based

on categories is 0.47, which highlights that some microservices

also use different technologies within the same category.

In Figure 6, we present a cross-matrix showing, for each pair

of possible DB categories, the percentage of combinations. The

y-axis and x-axis represent DB categories. They are sorted by

popularity according to the results obtained previously. Cells

are filled with a color gradient from white to black depending

on the percentage. Cells account also for the combinations of

more than just the exclusive pair, as long as the two categories

are present in the tuple. The diagonal indicates the percentage

of repositories having the category.
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Figure 6: Pairwise combinations of DB categories.

⟨Relational, Key-Value⟩ is the pair of DB categories most fre-

quently combined, in 29.35% of cases, followed by ⟨Key-Value,

Document⟩ in 11.34% of cases, and closely by ⟨Relational,

Document⟩ in 11.14% of cases. Combinations paired with

Search are quite popular: 10.45% for ⟨Relational, Search⟩,

8.06% for ⟨Key-Value, Search⟩, and 4.58% for ⟨Document,

Search⟩. The remaining associations appear in less than 3%

of cases. Some are non-existent: No combinations appear

for ⟨Column, Spatial⟩, ⟨Time Series, Vector⟩, ⟨Vector, Event⟩,

⟨Vector, Spatial⟩, ⟨Event, Graph⟩, ⟨Event, Spatial⟩, or ⟨Graph,

Spatial⟩, suggesting that niche categories are generally not as-

sociated with each other. To overcome the limited overview

provided by pairwise associations, we report all combination

patterns observed for the top 5 DB categories with all the sub-

sets in their power set (and exclusive use).

Table 5 presents them formally with the mathematical nota-

tion of sets (e.g., R, K), difference (\), union (∪), and inter-

section (∩). Then, Figure 7 shows the corresponding Sankey

diagram [20] highlighting the frequency of each pattern.

Table 5: DB categories associations in microservices.

Association # Association #

R\{K ∪ D ∪ S ∪C} 337 R ∩ K ∩ D ∩ S ∩C 11

R ∩ K 183 K ∩ S 6

R ∩ K ∩ D 43 K ∩ D ∩ S 8

R ∩ D 37 R ∩ S ∩C 3

K\{R ∪ D ∪ S ∪C} 70 R ∩ D ∩ S ∩C 1

R ∩ K ∩ S 39 K ∩C 2

R ∩ S 32 K ∩ D ∩C 2

R ∩ K ∩ D ∩ S 10 D ∩ S 8

K ∩ D 36 K ∩ D ∩ S ∩C 2

R ∩ K ∩C 4 K ∩ S ∩C 2

R ∩C 7 S \{R ∪ K ∪ D ∪C} 31

R ∩ K ∩ D ∩C 2 D ∩C 1

R ∩ D ∩ S 6 S ∩C 2

D\{R ∪ K ∪ S ∪C} 90 C\{R ∪ K ∪ D ∪ S } 6

R ∩ D ∩C 2 D ∩ S ∩C 0

R ∩ K ∩ S ∩C 3

Sets: (R)elational = 720, (K)ey-Value = 423, (D)ocument = 259, (S)earch = 164,

(C)olumn = 50.
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Figure 7: Sankey diagram of the 5 DB categories associations.
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The most popular association patterns for two categories are:

⟨Relational, Key-Value⟩ (18,21%), ⟨Relational, Document⟩,

and ⟨Relational, Search⟩. For triplets: ⟨Relational, Key-Value,

Document⟩ (4,28%) and ⟨Relational, Key-Value, Search⟩. On

the side of quartets, ⟨Relational, Key-Value, Document, Search⟩

is the most popular one with 10 occurrences, even though it

represents only 1% of the dataset. For quintets, we reveal 11

microservices repositories opting for ⟨Relational, Key-Value,

Document, Search, Column⟩. Once again, this happens only

for a tiny fraction of the repositories in the collected dataset,

but the fact that there are a few repositories mixing all the cate-

gories highlights the high variety in the wild.

The relationships between the associations are not transitive.

For example, no repository follows the ⟨Document, Search,

Column⟩ pattern, although ⟨Document, Search⟩, ⟨Document,

Column⟩, and ⟨Search, Column⟩ associations exist. This last

duo also shows that in the top 5, some repositories exist without

any DB categories from the top 3. Furthermore, excluding only

the top category (Relational DBs), we can observe that several

associations exist that do not include the most popular category.

For instance, we can notice 36 microservices repositories with

only Key-Value and Document DBs. Another interesting ob-

servation is the number of microservices repositories contain-

ing one and only one category of DBs. For instance, 337 out

of 1,005 repositories (33.53%) contain only Relational DBs, 90

(8.96%) contain only Document DBs, and 70 (6.97%) contain

only Key-Value DBs. Those are in the complement of the 0.47

DHR.

To analyze how niche DBs are connected with mainstream

ones, we propose a graph-based representation depicting links

between DB categories in Figure 8.

Relational

Key-Value

Document

Search

Column

Time series

Vector

Others

Event

Graph

Spatial

Figure 8: Pairwise associations between mainstream (left) and niche (right) DB

categories.

Nodes represent DB categories, whose size depends on the

popularity, and links represent DB associations, where the size

of the link is proportional to the number of associations in that

category. Nodes on the left represent mainstream DB cate-

gories, while nodes on the right represent niche ones.

In line with previous observations, this graph confirms that

niche DBs are rarely associated with each other (0.37%). It also

shows that, in most cases, niche DBs are commonly associated

with a mainstream one (12.34%). Mainstream-mainstream DB

associations are the most popular (87.29%).

Finally, considering specific DB technologies, the most pop-

ular associations are ⟨PostgreSQL, Redis⟩, ⟨Redis, MongoDB⟩,

and ⟨PostgreSQL, MongoDB⟩ for duos, ⟨PostgreSQL, Redis,

Elasticsearch⟩ and ⟨PostgreSQL, Redis, MongoDB⟩ for trios,

and ⟨PostgreSQL, Redis, MongoDB, Elasticsearch⟩ for quar-

tets.

RQ2: Findings

F2.1 52% of the repositories declare two DB tech-

nologies and 47% contain DBs from two distinct

categories. Half of the repositories are mono-

technology/-category.

F2.2 Some microservices repositories also declare sev-

eral DBs belonging to the same DB category.

F2.3 The DB categories practitioners combine the most

(in pairs, trios, and all together) are Relational,

Key-Value, Document, and Search, associated ac-

cording to several different and non-transitive pat-

terns.

F2.4 There are empty association patterns (e.g., Docu-

ment, Search, and Column) that should be investi-

gated further.

F2.5 In most cases, niche DBs are associated with a

mainstream one (12.34%) and rarely with other

niche DBs (0.37%).

F2.6 The most popular DB technology associations are

PostgreSQL with Redis for duos, PostgreSQL, Re-

dis, Elasticsearch for trios, and PostgreSQL, Redis,

MongoDB, and Elasticsearch for quartets.

3.3. RQ3: Microservices Complexity & Databases

To analyze the complexity of microservices and their DBs,

we compute the number of services (excluding DBs) declared

in the Docker Compose file(s). We create scatter plots com-

paring the number of services (x-axis) with the number of DB

technologies, in Figure 9, and categories, in Figure 10, on the

y-axis. We use the number of services within a microservices

architecture as a proxy measure of complexity. We estimate

the slope of the linear regression and plot the corresponding

regression lines to identify trends and explore the potential re-

lationship between microservice complexity (x-axis) and DB

(y-axis).
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Figure 9: Comparison of the number of services and the number of DB tech-

nologies in microservices.
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Figure 10: Comparison of the number of services and the number of DB cate-

gories in microservices.

We also perform a Student’s t-test to assess whether the slope

differs significantly from zero. The null hypothesis assumes no

linear relationship (i.e., a slope of zero). We consider the null

hypothesis rejected if the resulting p-value is less than or equal

to 0.05, indicating statistical significance. In our case, the linear

regressions suggest that the more services there are, the more

DBs there are. Results are confirmed as statistically significant

(p-value ≤ 0.05).

Following the same approach, we analyze another perspec-

tive with a different complexity proxy. We compare the disk

size of each repository (x-axis) with the number of DB tech-

nologies in Figure 11 and categories in Figure 12 (y-axis).

Larger microservices architectures tend to have more DBs in

a statistically significant way (p-value ≤ 0.05).

The two complexity proxies we used agree on indicating the

complexity of a microservices architecture as linked to the num-

ber of DBs it contains.

To complement this observation with concrete examples, we

analyze the popular DB technologies and categories in projects

that the considered proxies identify as complex. We select 61

projects among the 1,005 that have at least 80 MB in size, 20

services, and 2 DBs.

The popular technologies differ slightly from those found

across the entire dataset (see RQ1). The top 5 are Redis, Post-

greSQL, MySQL, Elasticsearch, and MongoDB.
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Figure 11: Comparison of the repository size on disk and the number of DB

technologies in microservices.
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Figure 12: Comparison of the repository size on disk and the number of DBs

categories in microservices

Redis overtakes PostgreSQL as the most used DB, indicat-

ing a shift from Relational to Key-Value in complex architec-

tures, likely due to increased caching needs. Elasticsearch sur-

passes MongoDB, highlighting the growing role of Search DBs

in complex scenarios.

At the category level, the distribution remains similar to the

overall dataset, with Relational DBs still offering the most di-

verse technology options.

RQ3: Findings

F3.1 The complexity of a microservices architecture in

terms of number of services is correlated both with

the number of DB technologies and categories.

F3.2 The number of DBs and DB categories is dependent

from the size of microservices architectures.

F3.3 Relational DBs are still prevalent, regardless of the

complexity of microservices architectures.

F3.4 In the most complex systems, DB technologies are

in a different order of popularity than in the com-

plete dataset. Redis is more popular than Post-

gres in complex systems and Elasticsearch is above

MongoDB.
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3.4. RQ4: Microservices Age and Databases

The results presented in the following scatter plots show the

relation between the age of a repository (x-axis) and its number

of DB technologies in Figure 13 and categories in Figure 14

(y-axis).
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Figure 13: Age vs. number of DB technologies.
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Figure 14: Age vs. number of DB categories.

We estimate the slope, draw the regression lines, and per-

form the Student’s t-test to derive the p-value. Results indicate

that we cannot reject the null hypothesis and thus we cannot

conclude statistically significant correlations (p-value > 0.05)

between the age of the repositories and the number of DB tech-

nologies and categories used.

We conduct complementary investigations to identify the 5

most popular DB technologies and categories according to two

age groups.

We analyze the oldest (13 years or more) and the most re-

cent (2 years or less) microservices we collected. PostgreSQL,

MySQL, Redis, and MongoDB are the most used in both age

groups (although in a different order). Among the oldest, the

top 3 are Relational. In contrast, we observe a more diverse dis-

tribution in newer projects, with the introduction of Key-Value

and Document DBs. While MariaDB is more popular among

older projects, Elasticsearch has taken its place in the top 5 for

newer projects, confirming a clear shift.

RQ4: Findings

F4.1 No conclusion can be drawn regarding a correla-

tion between the age of a microservices architecture

and the heterogeneity of its DBs.

F4.2 Microservices shifted from Relational DBs of older

architectures (PostgreSQL, MySQL, and MariaDB

as the top 3 technologies), to Key-value, Docu-

ment and Search categories, with Redis, MongoDB,

and Elasticsearch leading in popularity in younger

projects (less than 2 years old) after PostgreSQL.

F4.3 The relational model remains predominant al-

though it is now 5 times less present in the most

recent microservices.

4. Implications and Recommendations

In this section we analyze the implications of the presented

results for the state of practice. We compare our findings with

previous literature to highlight up-to-date recommendations for

practitioners.

4.1. Database Usage and Prevalence in Microservices

Relational and Document DB categories are expected to be

prevalent in microservices due to their popularity in monolithic

architectures and their ability to manage structured and semi-

structured data [3, 8]. Document and Key-Value DBs are com-

mon due to their flexibility and adaptability to the dynamic

nature of microservices [3]. Search DBs are also expected to

be used, fulfilling a specific role in microservices that require

search capabilities [3, 8]. We confirm the popularity of these

four categories, noting that Key-Value DBs are way more pop-

ular (42.09%) than Document DBs (25.77%). This is a key

difference with respect to what has been found for general soft-

ware [8]. Our work also highlights how Column and Time Se-

ries DBs are important for microservices architectures, given

the fact that these categories are present in tens of repositories

(respectively, ranking 5th and 6th in the top 10).

In terms of technologies, PostgreSQL, MySQL, SQL Server,

Redis, MongoDB, and Elasticsearch are expected to be among

the most commonly used DB technologies [3, 8]. Our results

confirm their popularity, now reporting them in a ranking dedi-

cated to microservices.

Adding to this picture, MariaDB, etcd, Cassandra, and In-

fluxDB are also part of the top 10 most popular technologies,

while previously they were flying under the radar. There are

ªsafeº choices that, by general consensus, are preferable. We

can refer to the top technology in each category including Post-

greSQL for Relational DBs, Redis for Key-Value, MongoDB

for Document, Elasticsearch for Search, Cassandra for Column,

InfluxDB for Time Series, Milvus for Vector, EventStoreDB for

Event, Neo4j for Graph, and PostGIS for Spatial DBs.
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Regarding less common and specialized DB technologies,

they are expected to address specific requirements within mi-

croservices, as encouraged by the architectural style [3]. Our

results reveal the specific DB technologies selected for such

niche goals. Examples include EventStoreDB, Neo4j, and Post-

GIS.

R1.1 Variety training. Microservices practitioners

should be aware of the variety of DB categories and

technologies commonly used in such architectures.

Training on Relational, Key-Value, Document, and

Search DBs is still essential.

R1.2 Niche awareness. Microservices developers

should be aware of specific DB categories address-

ing niche goals, such as Column, Time Series, Vec-

tor, Event, Graph, or Spatial DBs.

R1.3 Popularity consideration. Microservices de-

velopers’ training should include popular tech-

nologies like PostgreSQL, MongoDB, Elastic-

search, and eventually Cassandra, InfluxDB, Mil-

vus, EventStoreDB, Neo4j, and PostGIS.

R1.4 Technology vs. principles. In some categories

(e.g., Event, Graph, Spatial), knowledge of the most

popular technology is enough to guarantee direct

applicability in most cases, while for other (e.g.,

Relational), knowledge of the underlying principles

can improve ªknowledge portabilityº with respect

to the many alternative technologies.

4.2. Database Associations in Microservices

Regarding DB associations in microservices, practitioners

often combine multiple technologies and typically at least two

distinct categories [3]. Our results confirm this degree of het-

erogeneity on technologies. 52% of the selected repositories

declare two DB technologies, with 47% from two distinct cat-

egories. Nevertheless, the remaining half does not embrace

polyglot persistence, declaring only a single technology and

category. Surprisingly, some microservices repositories declare

several DBs belonging to the same category. These are inter-

esting candidates for future studies on the role and evolution of

co-existing technologies that our dataset provides.

The association of Relational and Document DBs together

has been previously found to be prevalent [3, 8]. Some reposito-

ries also integrate with them Key-Value and Search-based DBs,

all simultaneously [3, 8].

We pointed out the various patterns in the associations among

these categories. Other associations with niche DBs concern

only a few microservices. While DB categories are more com-

monly combined in pairs or trios, there exist repositories with-

out any Relational, Key-Value, and Document DBs (i.e., the top

3 categories). There is an interesting and unexpectedly empty

association pattern concerning the combination of Document,

Search, and Column categories that deserves further attention.

In the literature, associations among PostgreSQL, Mon-

goDB, Redis, and Elasticsearch, have been found to occur more

frequently [3, 8]. Our analyses confirm this result. Instead, our

analyses highlight how niche categories (e.g., Vector, Event,

Graph, Spatial) are less commonly combined with each other.

Practitioners prefer to pair them with mainstream ones.

R2.1 Heterogeneity handling. Microservices practi-

tioners should handle the heterogeneity and asso-

ciation of DB technologies, especially among Rela-

tional, Key-Value, Document, and Search DBs, by

being able to master two or three categories at the

same time. Competence with a single specific DB is

often insufficient.

R2.2 Homogeneity acceptance. However, in about half

of the cases, homogeneity is observed. Microser-

vices architectures developers should also be pre-

pared for single-category and single-technology

scenarios, regardless of the polyglot persistence.

4.3. Microservices Complexity and Databases

Microservices tend to increase the technical complexity [6].

It is expected to positively correlate with the use of a greater

number of DB technologies [21, 22]. For instance, microser-

vices network centrality derived from inter-service calls is

associated with the number of public methods and call fre-

quency [23], reflecting the potential increase in data access and,

consequently, in the number of DBs. Our results confirm that

the number of services and the size of the project are correlated

with the number of DB categories and technologies.

In terms of technologies, complex architectures should favor

Document DBs for their flexibility in handling constraints and

Key-Value DBs for caching and performance optimization [3].

We found that in the most complex systems in our dataset, Re-

dis is over PostgreSQL and Elasticsearch is over MongoDB.

Nevertheless, Relational DBs remain very popular with multi-

ple alternatives. As a side effect, this gives to Redis the top spot

among the technologies.

R3.1 Complexity management. Practitioners con-

tributing to complex systems should be able to man-

age multiple DB technologies across different cate-

gories.

R3.2 Variety-induced gap. Although Relational DBs

are prevalent in general, the single most relevant

technology for practitioners is Redis.

4.4. Microservices Age and Databases

We analyzed the relationships between the age of the archi-

tecture and number of DB categories and technologies. Older

microservices are expected to accumulate more DBs [21, 22].
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Our analyses show there is no statistically significant correla-

tion between the two metrics.

Regarding the popularity of specific categories over time,

trends suggest a slightly decreased reliance on Relational

DBs [8], [47], especially in older microservices architectures

refactoring their codebase to leverage the newer technologies.

Our results confirm this scenario, with Relational DBs popu-

lar in older microservices (13 years or more) while Document,

Column, and Search DBs, are preferred in recent systems [3, 8],

[48, 49, 50, 51].

R4.1 Cautious replacement. Microservices contribu-

tors should not discard, over time, Relational DBs

in favor of other ªmodern replacementº DBs, given

their deep-rooted popularity, even in microservices.

5. Threats to Validity

In this section, we discuss limitations and threats that may

affect the validity of our study and how we mitigated them.

5.1. Construct validity

Threats to construct validity concern the relation between

theory and observation. Our identification of microservice

repositories relied on heuristics such as keywords, program-

ming languages, and structural indicators. While these heuris-

tics were carefully designed, some false positives and negatives

may persist, potentially including non-microservices and ex-

cluding relevant repositories that do not explicitly match some

of the criteria.

To partially mitigate this threat, multiple conditions must be

satisfied for the repository to be included in the dataset, with

more emphasis on precision rather than recall, ensuring the

quality of our dataset as future benchmark.

Another threat is the implicit exclusion of DB technologies

that lack Docker images, as the presence of Docker files was

used as a distinguishing criterion. Although these exclusions

are limited and do not involve the most popular DBs, they may

still slightly affect the comprehensiveness of our results. The

historical perspective presented in RQ4 is based on a fixed snap-

shot and considers only the age of the repository computed from

the creation date. While this offers initial insights, a more fine-

grained analysis of the actual evolution history of repositories

would provide a better understanding of trends.

Finally, our analyses considered all DBs declared in Docker

Compose files, regardless of whether they were actively used

in the codebase. This could lead to the inclusion of unused or

ªghostº dependencies. A more in-depth approach, for example

leveraging static program analysis, would be necessary to con-

firm the actual usage of declared DBs in the application code.

5.2. Internal validity

Internal validity concerns how one can be confident on

claimed cause and effect relation. We do not claim any cau-

sation in our study. We analyze the (joint) usage of DB tech-

nologies in microservices applications, and assess possible cor-

relations with system complexity and age. Hence, this study is

not subjected to threats to internal validity.

5.3. External validity

External validity concerns the generalizability of findings be-

yond the study context. Our study considers different types of

projects in terms of application domain, size, complexity, pro-

gramming languages, and DB technologies. Although we en-

sured to collect an heterogeneous sample with respect to these

criteria, we only considered open-source projects and DB tech-

nologies in public GitHub repositories. These choices affect the

generalizability of our findings, yet our approach remains valid

and the insights pertinent in the context of industrial software

systems leveraging the same DBs.

5.4. Conclusion validity

Threats to conclusion validity concern the degree to which

the statistical conclusions about the claimed relationships are

reasonable. To reduce bias in results interpretation, we used

standard statistical methods such as linear regression, Student’s

t-test, and p-values.

5.5. Reliability validity

Reliability validity concerns factors that could cause an error

in data collection and analysis. To minimize potential threats to

reliability, we analyzed open-source projects publicly available

on GitHub and provided a replication package that contains our

dataset and all the scripts we used for our analyses.

6. Related Work

Most related studies focus on DBs or on microservices, but

separately. In this section, we review the relevant literature to

contextualize and position our work, emphasizing its contribu-

tion to bridging these two domains.

6.1. Databases

Curino et al. [24] propose an empirical study on DB schema

changes in real-world data-intensive open-source projects, fo-

cusing on Wikipedia as a case study. They highlight the chal-

lenges of maintaining and evolving such relational DBs and

provide observations based on 4.5 years or history and 171

revisions, culminating in 34 tables, 242 columns, and 700GB

of data. Their goal is to illustrate typical evolution scenarios

through types of changes, warn about common design errors,

and offer recommendations to researchers. This work repre-

sents a step towards a unified benchmark for researchers built

on a real, complex, and large case study.
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In the same vein, Qiu et al. [25] empirically analyze the co-

evolution of relational DB schemas and related source code in

10 popular and large projects composed of over 160K revisions

collected from the Subversion version control system. They

demonstrate the high frequency of DB changes in the software

life cycle, their impact on the source code, and the types and

patterns of these changes, proposing a list of DB schema change

types.

Still focusing on relational DB schemas, Vassiliadis [26]

studies the evolution profiles, i.e., the recurring activity pat-

terns in relational DB schema evolution. The author extracts

and analyzes the schemas of 195 open-source projects from Li-

braries.io. This work provides practitioners and researchers

with insights into evolution patterns to help them understand

and predict such phenomena.

Goeminne and Mens [27] investigate the technical (co-)usage

of DB access frameworks and object-relational mappers. They

empirically analyze usage implications for 5 relational DB

frameworks in 3.7K open-source projects in GitHub. The

authors perform a survival analysis, observing combinations

and complementarities across frameworks, especially those in-

volving JDBC. They report that some technologies (e.g., JPA,

Spring) exhibit better survival rates.

Decan et al. [28] propose another empirical study on the use

of relational DB access technologies like JDBC, Hibernate, and

JPA in about 2.5K open-source Java GitHub projects. They per-

form a fine-grained analysis at file level, assessing technolo-

gies breakdown and the impact of their replacements on source

code.

Small to medium scale case studies fail to capture general

trends in a large, in-vivo population of real world applications.

Large studies, on the contrary, focus on a limited amount of

technologies, often in a single category, often relational, lacking

qualities of a broad spectrum overview like in our study.

On the NoSQL side, Gessert et al. [12] compare several tech-

nologies, particularly for Key-Value, Document, and Column

store categories. They provide practitioners with a decision tree

to support choices based on functional and non-functional re-

quirements.

Davoudian et al. [13] present a comprehensive survey on

various NoSQL technologies, including Key-Value, Column,

Document, and Graph DBs. They analyze these technolo-

gies from the perspectives of data models, consistency models,

data partitioning strategies, and the CAP theorem (Consistency,

Availability, and Partition tolerance). Their work includes both

academic and industrial examples, providing valuable insights

to assist practitioners in making informed decisions on which

technology to use.

Scherzinger and Sidortschuk [29] present an empirical study

on NoSQL DBs, analyzing 1.2K open-source Java projects

and their GitHub history. They confirm common practices in

schema-free data modeling and evolution scenarios.

These work focus on the new type of NoSQL DB categories

but lack the context of the preceding and still surviving tech-

nologies. As confirmed by our findings on the collected dataset,

including both SQL and NoSQL categories and technologies,

the former are still far from being overthrown or obsolete.

A first step in the direction of a comparison between old

and new is the work by Benats et al. [8], unifying relational

and NoSQL data models in an empirical study investigating

the use of hybrid multi-DBs over time in different languages.

They consider 4 years of history across over 40K open-source

projects from Libraries.io. We compare their empirical study

with our findings (Section 4).

More recently, Paiva et al. [9] proposed an empirical study

encompassing all data models in 362 Java open-source projects

from GitHub. Studying the popularity and combinations of DB

technologies, their stability, migration patterns, and the role of

object-relational mappers, they provide insights to researchers

and practitioners for selecting appropriate DB technologies.

In the mobile domain, Lyu et al. [30] investigate local DBs

for Android by conducting an empirical study on 1,000 popular

apps from the Google Play Store. They provide an overview of

available technologies and their usage, identifying major prob-

lems and deriving recommendations for developers.

Our work compares the findings in microservices architec-

tures with the ones in generic software systems at large, high-

lighting similarities and differences specific to the microser-

vices domain.

6.2. Microservices

Brogi et al. [31] argue that previous works lack a refer-

ence dataset of open-source microservices projects, like a stan-

dardized benchmark. Thus, they propose µset, 5 microser-

vices projects easy to set up for repeatable experiments. These

projects are developed ad hoc, according to 5 common require-

ments in microservices, as identified by the authors.

Rahman et al. [17] propose the first dataset including real-

world microservices open-source projects from GitHub. This

list of 62 projects contains monoliths migrated to microservices

or projects developed from scratch following the microservices

architecture.

In a follow-up work, d’Aragona et al. [18] enlarge this

dataset with 378 open-source projects from World of Code,

developed in several languages. They document each project

with additional data and insights helping researchers to select

the most appropriate items for their work. In comparison to

our work, the authors deliberately exclude the DBs from their

study, focusing only on the modular nature of the microservices

architectures of those systems.

Finally, Wang et al. [32] present a dataset of microservices

applications utilizing Spring Cloud. Their contribution aims to

complete previous works by suggesting complex fine-grained

metrics in order to understand bad code smells in microservices.

6.3. Microservices and Databases

Only works by Gan and Delimitrou [14], Gan et al. [15], and

Laigner et al. [33] propose, as benchmarks for researchers, mi-

croservices architectures repositories written in various popular

languages and with different DBs. They aim to provide stan-

dard baselines for their studies and subsequent research. In all

these cases, the intended benchmarks are comprised of a single

to a maximum of six ªsynthetic and prototypicalº end-to-end

applications.
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To the best of our knowledge, our empirical study is the

first to bring together over 1,000 open-source microservices

projects, in 11 different languages, to investigate their use of

DBs across a wide variety of technologies and categories, sur-

passing the previous works discussed above in either size of the

dataset or number and variety of considered DB technologies

and categories.

7. Conclusion

We presented an empirical study on DB usage in mi-

croservices, analyzing one thousand open-source projects from

GitHub developed in the last 15 years.

Our work addresses questions regarding the prevalence of

DB categories and technologies used in microservices. We in-

vestigated, from several perspectives, the way DBs are com-

bined in practice, observing recurrent patterns. We deepened

our observations with objective fine-grained metrics and high-

light relationships between different characteristics (e.g., com-

plexity vs. age).

Besides the ªusual suspectsº, we shed light on less common

DBs like Time Series, Vector, Event, Graph, and Spatial DBs

addressing niche goals. We highlighted a variety of Relational

technologies and, overall, a variety of DBs with up to 60 unique

technologies identified.

We show how microservices rely on heterogeneous DBs.

Half of them use multiple DB technologies across different DB

categories. Consequently, the other half uses a single technol-

ogy and a single category, with unclear implications on the

best strategy for database practitioners to prepare for a career

path involving microservices architectures. From our analyses

it emerges the large spectrum of combination patterns. Never-

theless, we try to pinpoint findings leading to practical observa-

tions and recommendations for practitioners. The 18 findings

and 9 recommendations we derive are the simplest yet faceted

representation of such a complex and heterogeneous reality.

Finally, we emphasize that larger microservices architectures

tend to leverage more and diverse DBs. We analyze how still

leading Relational DBs, shifting across the years, are now five

times less prevalent in microservices, to the profit of emerging

technologies such as Document, Key-Value, and Search DBs.

As a concluding remark, fundamental contributions of this

work are also the dataset and the systematic approach with

which we automatically built it. The published dataset is the

factual basis for the reflections presented in this work and con-

stitutes a sound starting point for future large scale research

endeavors. Our work supports researchers and practitioners in

understanding, evolving, and optimizing DB usage in microser-

vices architectures.

Replication package and dataset

To ensure transparency, verifiability, and reproducibility of

our work, all the artifacts resulting from our study are available

at: B https://github.com/DatabaseEvolutionNudgeI

nMicroservices/daim

This repository includes the MongoDB database with our

complete dataset (i.e., the list of GitHub repositories consid-

ered) and the scripts used to perform the analyses and to gener-

ate charts, tables, matrices, and metrics in the present work.
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