
Microservices: Granularity vs. Performance

Dharmendra Shadija
Sheffield Hallam University
Sheffield, United Kingdom

d.shadija@shu.ac.uk

Mo Rezai
Sheffield Hallam University
Sheffield, United Kingdom

m.j.rezai@shu.ac.uk

Richard Hill
University of Huddersfield

Huddersfield, United Kingdom
r.hill@hud.ac.uk

ABSTRACT

Microservice Architectures (MA) have the potential to increase the

agility of software development. In an era where businesses require

software applications to evolve to support software emerging re-

quirements, particularly for Internet of Things (IoT) applications,

we examine the issue of microservice granularity and explore its

effect upon application latency. Two approaches to microservice

deployment are simulated; the first with microservices in a single

container, and the second with microservices partitioned across

separate containers. We observed a neglibible increase in service

latency for the multiple container deployment over a single con-

tainer.

CCS CONCEPTS

·Computer systems organization→Cloud computing; · Soft-

ware and its engineering → Software creation and manage-

ment;

KEYWORDS

Microservice Architecture, software engineering, Internet of Things,

performance

ACM Reference Format:

Dharmendra Shadija, Mo Rezai, and Richard Hill. 2017. Microservices:

Granularity vs. Performance. In Proceedings of September (Preprint). ACM,

New York, NY, USA, Article 4, 6 pages. https://doi.org/xx.xxxx/nnnnnnn.

nnnnnnn

1 INTRODUCTION

Whilst the availability of utility clouds reduces the costs and as-

sociated responsibilities for physical infrastructure for business

IT functions, it also presents new opportunities for application

development teams to exploit. Providers of utility cloud comput-

ing endeavour to deliver seamless computing and storage services,

that are elastic in nature, meaning that software development for

cloud computing can focus more on flexibility, reuse and improved

Quality of Service (QoS).

Service Oriented Architecture (SOA, and subsequently łweb

servicesž[3, 6]), is a natural fit for łeverything-as-a-servicež, but it

is also practical to decompose software applications into discrete

services as it can help bridge the comprehension gap between

users requirements and design specifications, whilst also improving

software design by moving away from more inflexible, monolithic

architectures[14, 25].

As service orientation thinking matures, there is now the con-

struct of Microservice Architecures (MSA)[20], which have gained

Preprint, Conf., 2017

2017. ACM ISBN xxx-x-xxxx-xxxx-x/YY/MM. . . $0.00
https://doi.org/xx.xxxx/nnnnnnn.nnnnnnn

popularity with software development teams who have a need to be

able to provide applications that can scale in response to emerging

requirements[23]. An MSA consists of discrete services that are

interconnected to deliver a workflow[11][10].

In general, an MSA can be thought of has containing services

that satisfy more focused areas of an applications functionalities,

though this is not always the case. Further discussion of this can

be found in Shadija et al[22].

The need to consider applications that can support future expan-

sion in functionality is a logical progression as computational and

communication capabilities become embedded in more devices[7].

Specifically, the Internet of Things (IoT) presents many new and in

some cases unforeseen ways for users to interact with systems, as

well as systems being able to sense their environment in a multitude

of different scenarios through IoT devices[18].

This article explores one particular aspect of MSA - service gran-

ularity - as this has considerable potential to have an impact upon

application latency[8]. We examine the deployment of an enter-

prise software application using two MS architectures, and suggest

some indicative guidelines for application architects to consider

when designing or migrating to cloud-based applications that utilise

microservices. We then discuss the findings in the context of IoT

application architectures.

The article is organised as follows. First we introduce the key

concepts and qualitative issues surrounding MS granularity. We

then apply MSA principles to the cloud deployment of a university

admissions system and simulate service invocation response times.

Finally, we discuss MSA deployment in the context of IoT and

identify some open questions for the research community.

2 GRANULARITY

Microservices can be declared with varying levels of capability, and

the size of this functionality is typically referred to as its granularity,

that is, the functional complexity coded in a service or number of

use cases implemented by a microservice[21].

Since microservices are discrete and must be composed into

greater functional entities to support business workflows, it follows

that message passing between microservices (as a result of method

invocation) increases as the microservices become finer-grained.

The ‘building-block’ approach to service composition is attrac-

tive from an architectural perspective; arguments for service re-

use can be made, and the gap between application design and the

user requirements documentation can be reduced. However, the

increase in communication between services (manifesting as out-of-

process calls and the number of service calls made) also increases

the response time of an application, particularly when many small

increases in latency are compounded together[26].

Achieving an optimum level of granularity is therefore of interest

to application developers who want to explore MSA for deployment,

ar
X

iv
:1

70
9.

09
24

2v
1

 [
cs

.S
E

]
 2

6
Se

p
20

17

https://doi.org/xx.xxxx/nnnnnnn.nnnnnnn
https://doi.org/xx.xxxx/nnnnnnn.nnnnnnn
https://doi.org/xx.xxxx/nnnnnnn.nnnnnnn

Preprint, Conf., 2017 D. Shadija et al.

and the key factors that contribute to this can be summarised as

follows:

• Driven by business need or capability. The needs of a business

may be changing rapidly and demanding new functionality

from an application. This growth may not be manageable

within the existing application architecture and therefore

a granular approach is adopted. It is typical for application

developers to use the functionality itself to set the scope that

determines the size of a microservice.

• Size of application. For smaller applications the level of gran-

ularity could be fine-grained. For enterprise (larger) sized

applications, the granularity is likely to be at a higher level

(coarser) with each microservice built up from smaller mi-

croservices. However, as we discuss later, for smaller applica-

tions there may stiil need to be an aggregation of services to

facilitate simpler communication and reduced latency over

IoT network connections.

• Size of development team.The number of developers in a team,

together with their skills capability should be considered.

Conway (http://www.melconway.com/Home/Conways_Law.

html) says łorganizations which design systems ... are con-

strained to produce designs which are copies of the commu-

nication structures of these organizationsž. In the context of

MSA, but more specifically Domain Driven Design [12], the

degree of success of functional decomposition, and its subse-

quent implementation as a successful service, is dependent

upon the organisational structure of the development teams.

• Database design. The design of a database may have an im-

pact on granularity. For example, in a retail scenario if there

is a product service and an order service, the functional de-

composition is likely to have led to the implementation of

separate data repositories for each service. Any association

of the data between the databases will be implemented at

code level, leading to more coarse-grained microservices.

• Reuse.MSA promotion of reuse in the architecture is a con-

cern for enterprise applications. If the services are fine-

grained then reuse is possible but there is the additional

overhead of wiring the services together. If the services are

too coarse grained then it is difficult to reuse the services.

One of the main concerns for application developers to consider

is that of user experience, which is influenced by the perceived

performance of an application. Developers seek to minimise latency

within an application as far as is practicable, in order to maximise

software responsiveness[21, 24].

It follows that whilst architectural concerns may lead designers

towards finer-grained functional decomposition[12, 13], any po-

tential increase in the number of methods invoked, either within

a container or between physical servers via a network, will have

an increased contribution towards latency, particularly when virtu-

alised. Containers are one means of addressing the latency to some

extent when the microservices exist in cloud environments[9, 19].

Figure1 illustrates the message request and response between two

microservices, A and B. The overall latency is determined by a

number of factors, including the following:

• Number of calls;

• Network latency and availability;

Figure 1: Method invocation between microservices.

• Availability of microservice;

• Processing time;

• Variability in demand/load;

While considering latency there are two other factors to consider.

First, the criticality of the service being called and second, the

number of times it is called. For example, although calling a łqualifi-

cationmappingž service is important, it is not critical to the function

of the system. If it is not working the system can still accept new

applications.

An additional factor to be considered is whether the application

under consideration is a new application or an existing application

that is being migrated to MSA. For a new application, database

design will have less influence as there will not be a database in

place already. For an existing application, the organisation and

design of existing data and their structures is an important factor

to consider.

This article uses an evolutionary case study to propose guiding

principles for granularity within MSA. As MSA has an affinity with

systematic growth in an application, we have chosen a case study

that depicts expansion in functionality and user load over time,

making it an ideal candidate for MSA.

3 CASE STUDY: UNIVERSITY ADMISSIONS

SYSTEM

UK universities each administer their own applications to receive

and process applications from potential students. In the UK, the

overall process is governed by a Central Admissions Authority

(CAA), the Universities and Colleges Admissions Service (UCAS),

with each higher education institution deploying local systems to

interface with the national UCAS system.

CAA systems are examples of applications that traditionally had

stable requirements in terms of specification, and it was rare that

additional functionality needed to be added. However, changes in

the UK national policies for students obtaining funding for uni-

versity study have led to a shift in behaviour in relation to how

applicants choose their institution.

Such a change has led to universities seeking to reach out to their

applicants in new ways, requiring closer integration between pre-

viously disparate systems such as marketing, as well as developing

new capabilities to engage applicants.

Additionally, university admissions systems are examples of

large scale applications that are now being migrated to clouds, with

an associated degree of effort being invested into the translation of

traditional monolithic structures into service-oriented models.

Therefore, changes in the higher education environment are

placing demands upon the providers of CAA systems.

The proliferation of mobile devices being used as interfaces to

larger systems is leading to a desire to enable tighter integration of

a greater range of devices, including RFID personal identification

http://www.melconway.com/Home/Conways_Law.html
http://www.melconway.com/Home/Conways_Law.html

Microservices: Granularity vs. Performance Preprint, Conf., 2017

cards, location sensing and mobility tracking technology. This po-

tential rich environment of technology-facilitated interaction lends

itself, at least conceptually, to an MSA.

As such, we consider the case whereby an existing CAA admis-

sions system is to be re-engineered using an MSA.We also illustrate

the expansion and growth in requirements of the application over

time, summarised by the following four stages.

3.1 Stage One

Intial motivations for the application are:

(1) Accurately recording applicant information.

(2) Recording the offer received from each university.

3.1.1 System workflow. Each applicant completes a paper form

which is posted to the CAA together with any required documen-

tation. An Admissions Officer (AO) at the CAA enters details from

the form into their system. Forms are then printed by the AO and

posted to the relevant universities. Universities assess individual ap-

plications and make offers. Universities communicate offers directly

to students.

3.2 Stage Two

Students search for course information on the CAA system. Cur-

rently this information is supplied by each university to the CAA on

an annual basis. One of the flaws of this system is that information

could be out of date due to new courses being introduced or some

courses being deleted from the prospectus.

• In addition to functionality from Stage One, the CAA system

should also display up to date course information.

3.2.1 System workflow. In this case, the application workflow

from a student perspective remains the same. There is a change

in how course information is displayed to potential students; the

system now accesses course information in real time using REST

services.

3.3 Stage Three

Due to the success of the CAA application it was decided that college

admissions should also be undertaken using the CAA system.

3.3.1 System workflow. Again, the application workflow re-

mains the same from the perspective of a student, with the addition

that they now have the option of applying for college (Further

Education) admission as well as university (Higher Education).

3.4 Stage Four

The CAA System will now process applications from international

(overseas) students. This also integrates functionality from the

qualification mapping services in external organisations, during

the application handling process. The REST API calls to achieve

the above functionality are summarised in Table 1. An overview of

the MSA deployed onto one container is illustrated in Figure 2.

4 SIMULATION

From the application scenario described in section 3, we have sim-

ulated two MSA deployments. The first uses a single container for

all of the microservices as per Figure 2. Figure 3 illustrates the par-

titioning of microservices onto two containers, thereby introducing

method invocation across containers.

4.1 Test environment

For the simulation, we deployed Microsoft ASP.Net REST APIs

programmed using C# onto a Microsoft IIS v7 webserver. The web

application was also hosted on an IIS webserver. Activity monitor-

ing was provided by the Dynatrace (https://www.dynatrace.com/)

tool.

4.2 Results

The results are summarised in Figure 4. In the first case, all of

the microservices identified were implemented and hosted on the

same server, and requests of varying volume were made through

the web application. The roundtrip time of service invocation was

recorded using Dynatrace. This was repeated for the dual container

implementation, where the microservices were distributed across

the web servers.

Figure 4 quantifies the latency for each case, showing how la-

tency increases for a given volume of requests from the user inter-

face. The graph shows the total time taken for a request originating

from the browser to a response being displayed in the browser.

In the second case services were implemented on separate servers.

Since a network component had been inserted between the services

an increase in latency was expected.

However the relative difference between each deployment re-

mains small at less than 1%, though this is for a single workflow

with no dependencies upon other supplying services. Since MSAs

promote re-use, nested dependencies have the potential to introduce

significant delays even if the origins of the latency are relatively

small.

5 DISCUSSION

Finer-grained microservices result in a potential increase in the

number of in-process method invocations. This is tolerable when

the microservices lie within the same container, as the message

passing is rapid and the probability that the service request is

completed is high and wholly dependent upon the application in

the container.

Once the messages broach the boundaries of containers to make

requests to externalmicroservices, additional vulnerabilities threaten

the successful completion of the request, not least the variables

introduced by a network connection.

As such, the issue of performance is not wholly restricted by

latency through increased network traffic, but it is also influenced

by additional risks from external communication mechanisms.

An application designer who does not have to consider dis-

tributed applications can then adopt the MSA approach within

one container, or at least use containers to scale an application but

have those containers hosted on the same cloud.

However, this is not the case for applications that require the

integration of IoT devices, whereby it is expected that there will be

a distribution of services across entities, and that there will be at

least two containers on at least two hosts.

Preprint, Conf., 2017 D. Shadija et al.

Table 1: REST API call URLs

Method URL Description Database action

GET /CAA Entry point to CAA Application READ

GET /CAA/Application/ Reads application(s) from Database READ

GET /CAA/Application/{applicationId} Reads application from Database based on applicationId READ

POST /CAA/Application/{applicationId} Updates an application in the database UPDATE

PUT /CAA/Application/ Adds a new application into the database. INSERT

DELETE /CAA/Application/{applicationId} Deletes an application from database DELETE

GET /CAA/Application/PrintApplication Prints application for delivery to university READ

POST /CAA/Application/ShipApplication Delivers application to university POST

Figure 2: Application architecture with microservices deployed into a single container.

This suggests that the issue of microservice granularity has to be

treated differently depending upon the future requirements that are

envisaged, which is the underpinning challenge and therefore the

motivation for this work. Microservices that co-exist in the same

container can benefit from finer-grained deployments, whereas

microservices distributed across networks have a more resilient

architecture when they are exposed as courser-grained services.

5.1 Implications for IoT applications

Approaches to IT delivery such as cloud computing have enabled

application development to be somewhat simplified, which in turn

has facilitated more complex solutions to challenging business

problems. The Internet of Things does provide far more challenging

complexity to deal with.

The constraints of device capability are rapidly dwindling as

the miniaturisation of hardware continues to reduce costs and

increase capabilities. One such example is edge computing, where

computational power is located at the edge of a network as opposed

to being centralised as per the client-server or n-tier architectures.

Edge computing utilises cloudlets to simplify collections of con-

strained hardware (such as embedded systems, FPGA, etc.) so that

applications can be deployed in a platform and technology agnostic

fashion [15].

Figure 5 describes an edge computing architecture whereby dig-

ital camera images are pre-processed on an edge device, before

Microservices: Granularity vs. Performance Preprint, Conf., 2017

Figure 3: Application architecture with microservices deployed into two containers.

Figure 4: Round-trip service requests/responses and latency

for single and dual container deployment.

being mined for patterns on a cloudlet. The cloudlet is one or more

devices local to the camera, and therefore in close proximity to the

edge of the network.

Microservice messaging deployed within the cloudlet will be

a combination of in-container and container-to-container calls,

as well as communicating with services hosted in the destina-

tion cloud. ZeroMQ is one example of a protocol for inter-service

communication[1]. Similar examples exist in other domains such

as the delivery of community healthcare services[4, 16, 17], where

Figure 5: Using cloudlets to simplify streaming analytics at

the edge of a network.

there is the added complexity of restricted bandwidth in Low Power

Wide Area Networks (LPWAN), used as an effective way of ensuring

reliable network coverage that is independent of telecommunica-

tions or WiFi networks (see Figure 6). Data collected via IoT devices

is analysed locally within the home environment, providing a fast

response for visualisation, whilst also maintaining patient privacy.

Analytics functions then produce insight that is stored in a central

Preprint, Conf., 2017 D. Shadija et al.

Figure 6: An IoT architecture for the delivery of community

healthcare services.

remote cloud, upon which intelligence functions can be performed

upon the collective dataset[2] of the community. These domains are

challenging to model so that the interactions can be authentically

captured[5]

MSA seems to be particularly suited to these emerging situations

as it is feasible that services may be decomposed and distributed in

one setting, and then bundled together in fewer (or single) contain-

ers in another scenario.

This implies that the deployment domain might influence the

orchestration of the granularity of microservices; this is an interest-

ing open challenge for the research community, particularly with

regard to the autonomous orchestration, packaging and deployment

of microservices as a result of sensing the local IoT environment.

6 CONCLUSIONS

Microservices appear to enable a more detailed ‘finer-grained’ ap-

proach to service declaration, and as a consequence can permit

greater reuse of functionality when they co-exist within a con-

tainer, or alongside separate containers on the same host. Whilst

this traditionally would have been a server, this also holds true

for cloud based environments where the platform is abstracted

away from the hardware via virtualisation. This level of granularity

is much finer than that experienced with more established web

services.

However, once the requirement for service invocation requires

a call to a container or host via a network link, there is a reduction

in performance both as a result of network data transfer rates, as

well as the potential for a communication link to fail.

The decision process for microservice granularity is therefore

influenced by a number of environmental factors, irrespective of the

potential to rely purely upon functional decomposition to specify

microservices at the łcorrectž size. In heterogeneous environments

such as clouds, abstraction from the disparate hardware is provided

by the platform. As yet, this concept of abstraction is not apparent in

IoT scenarios, and therefore, with the implied reliance upon network

links (and most likely those links will have limited bandwidth),

granularity must be considered from the standpoint of its eventual

impact upon application performance when deploying MSA.

REFERENCES
[1] 0MQ. 2017. Distributed messaging. (2017). http://zeromq.org/
[2] Hussain Al-Aqrabi, Lu Liu, Richard Hill, and Nick Antonopoulos. 2012. Taking

the business intelligence to the clouds. In High Performance Computing and
Communication & 2012 IEEE 9th International Conference on Embedded Software
and Systems (HPCC-ICESS), 2012 IEEE 14th International Conference on. IEEE,
953ś958.

[3] G Alonso, F Casati, H Kuno, and V Machiraju. 2004. Web Services: Concepts,
Architectures, Applications. Springer.

[4] Martin Beer, Richard Hill, Wei Huang, and Andrew Sixsmith. 2003. An agent-
based architecture for managing the provision of community careśthe INCA
(Intelligent Community Alarm) experience. AI communications 16 (2003), 179ś
192.

[5] Martin Beer, Wei Huang, and Richard Hill. 2003. Designing community care sys-
tems with AUML. In IEEE International Conference on Computer, Communication
and Control Technologies (CCCT2003).

[6] Tim Berners-Lee. 2009. Web Services. (2009). https://www.w3.org/DesignIssues/
WebServices.html

[7] Nik Bessis, Fatos Xhafa, Dora Varvarigou, Richard Hill, and Maozhen Li (Eds.).
2013. Internet of Things and Inter-Cooperative Computational technologies for Col-
lective Intelligence. Number 460 in Studies in Computational Intelligence. Springer.
http://www.ebook.de/de/product/19841342/internet_of_things_and_inter_
cooperative_computational_technologies_for_collective_intelligence.html

[8] D Bryant. 2016. The SevenDeadly Sins ofMicroservices. (2016). https://opencredo.
com/the-seven-deadly-sins-of-microservices-redux/

[9] Docker. 2017. Swarm mode overview - docker. (2017). https://docs.docker.com/
engine/swarm

[10] N Dragoni, S Dustdary, S Larsenz, and M Mazzara. [n. d.]. Microservices: Migra-
tion of a Mission Critical System. ([n. d.]). https://arxiv.org/abs/1704.04173

[11] N Dragoni, S Giallorenzo, AL Lafuente, M Mazzara, F Montesi, R Mustan, and
L Sana. 2017. Microservices: yesterday, today and tomorrow. (2017). https:
//arxiv.org/abs/1606.04036v4

[12] E Evans. 2003. Domain-driven design: tackling complexity in the heart of software.
Addison-Wesley Professional.

[13] E Evans. 2015. DDD and Microservices: at last, some boundaries!. In GOTO2015.
[14] WHasselbring. 2016. Microservices for scalability. In 7th ACM/SPEC International

Conference on Performance Engineering. ACM, 133ś134.
[15] Richard Hill, James Devitt, Ashiq Anjum, and Muhammad Ali. 2017. Towards

In-Transit Analytics for Industry 4.0. In 10th IEEE International Conference on
Internet of Things (iThings-2017). IEEE Computer Society, Exeter.

[16] Richard Hill, Simon Polovina, and Martin Beer. 2005. Managing Community
Health-care Information in a Multi-Agent System Environment. Multi-Agent
Systems for Medicine, Computational Biology and Bioinformatics (MAS* BIOMED),
AAMAS 5 (2005), 35ś49.

[17] Richard Hill, Dharmendra Shadija, and Mo Rezai. 2017. Enabling Community
Healthcare with Microservices. In The 16th IEEE International Conference on
Ubiquitous Computing and Communications (IUCC 2017). IEEE Computer Society,
Guangzhou, China.

[18] A. Ikram, Ashiq Anjum, Richard Hill, Nick Antonopoulos, Lu Liu, and Stelios
Sotiriadis. 2015. Approaching the Internet of Things (IoT): a modelling, anal-
ysis and abstraction framework. Concurrency and Computation: Practice and
Experience 27, 8 (2015), 1966ś1984.

[19] Kubernetes. 2017. Kubernetes - production grade container orchestration. (2017).
http://kubernetes.io

[20] J Lewis and M Fowler. 2014. Microservices: a definition of this new term. (2014).
https://martinfowler.com/articles/microservices.html

[21] S Newman. 2017. Building Microservices - Designing Fine-Grained Systems.
O’Reilly.

[22] Dharmendra Shadija, Mo Rezai, and Richard Hill. 2017. Towards an Understand-
ing of Microservices. In 23rd IEEE International Conference on Automation and
Computing. IEEE Computer Society, Huddersfield, UK.

[23] J Thones. 2015. Microservices. IEEE Software 32, 1 (2015), 116.
[24] N Viennot, M Lecuyer, J Bell, R Geambasu, and J Nieh. 2015. Synapse: A Microser-

vices Architecture for Heterogeneous Database Web Applications. In Proceedings
of the 10th European Conference on Computer Systems. ACM.

[25] L Walker. 2007. IBM business transformation enabled by service-oriented archi-
tecture. IBM Systems Journal 46, 4 (2007).

[26] X Xu, L Zhu, Y Liu, and M Staples. 2008. Resource-Oriented Business Process
Modeling for Ultra-Large-Scale Systems. In 2nd international workshop on ultra-
large-scale software-intensive systems. 65ś68.

http://zeromq.org/
https://www.w3.org/DesignIssues/WebServices.html
https://www.w3.org/DesignIssues/WebServices.html
http://www.ebook.de/de/product/19841342/internet_of_things_and_inter_cooperative_computational_technologies_for_collective_intelligence.html
http://www.ebook.de/de/product/19841342/internet_of_things_and_inter_cooperative_computational_technologies_for_collective_intelligence.html
https://opencredo.com/the-seven-deadly-sins-of-microservices-redux/
https://opencredo.com/the-seven-deadly-sins-of-microservices-redux/
https://docs.docker.com/engine/swarm
https://docs.docker.com/engine/swarm
https://arxiv.org/abs/1704.04173
https://arxiv.org/abs/1606.04036v4
https://arxiv.org/abs/1606.04036v4
http://kubernetes.io
https://martinfowler.com/articles/microservices.html

	Abstract
	1 Introduction
	2 Granularity
	3 Case Study: University Admissions System
	3.1 Stage One
	3.2 Stage Two
	3.3 Stage Three
	3.4 Stage Four

	4 Simulation
	4.1 Test environment
	4.2 Results

	5 Discussion
	5.1 Implications for IoT applications

	6 Conclusions
	References

