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Abstract—In the last few years, the cloudification of applica-
tions requires new concepts and techniques to fully reap the
benefits of the new computing paradigm. Among them, the
microservices architectural style, which is inspired by service-
oriented architectures, has gained attention from both industry
and academia. However, decomposing a monolith into multiple
microservices also creates several challenges across the applica-
tion’s lifecycle. In this work, we focus on the operation aspect
of microservices, and present our novel proposal to enable
self-optimizing microservices systems based on grid search and
random search techniques. The initial results show our approach
is able to optimize the latency performance of microservices to
up to 10.56%.

Index Terms—microservices, optimization, hyperparameter op-
timization, grid search, random search

I. INTRODUCTION

In essence, microservices encourage a more agile and mod-

ular approach to the whole software lifecycle, from design,

implementation, operation, to maintenance. By decompos-

ing monoliths into smaller, independently deployable units,

microservices can achieve a high level of scalability and

resiliency [1].

However, this design also comes at a cost: a microservices-

based application comprises many distributed services, thus

requires enormous efforts to manage individual services. In

addition, a good optimization technique also needs to consider

the complex interactions among microservices while tuning

interference parameters.

The increasing complexity of software systems in general

and cloud-based applications in particular gradually make

manual optimization impracticable. Motivated by that, this

work aims to automate the performance optimization process

using techniques known from machine learning, especially in

hyperparameter optimization problems.

II. USE CASE

We evaluate our approach using an existing microservices-

based application, which can automatically calculate the envi-

ronmental toll for vehicles based on the pollution level [2]. The

location coordinates of each vehicle are fetched in real-time

into the application, where they will be processed by a chain

of microservices as depicted in Figure 1. To evaluate the end-

to-end latency performance as well as the latency performance

MapMatcher
Service

PolutionMatcher
Service

TollCalculator
Service Dashboard

Open Source
Routing
Machine

Pollution
Area

Database

Vehicles

Fig. 1. Overview processing flow of the air pollution-aware toll system.

by each microservice, we apply a technique called Distributed

Tracing [3].

III. BACKGROUND & CONCEPT

Optimizing a microservices-based application with complex

interference among various parameters has been identified as

an exceptionally complex and challenging problem [4]. Several

works have focused on employing new techniques to automate

the optimization process, such as Bayesian optimization [5],

Meta-heuristic optimization [6].

In this work, we proposed using Grid search and Random

search, which have been used extensively for optimizing hy-

perparameters in machine learning, to optimize the microser-

vices’ configuration during runtime. These two approaches

require a bounded search space, which includes possible

values for each parameter. While Grid search evaluates every

position in the grid, Random search only randomly evaluates

parameter combinations.

In this work, we develop a new software component called

Microrservice optimizer, which automatically iterates through

the parameters selected by the operator (the search space),

generates new configuration combinations, applies them to the

microservices, and observes the performance of the application

as a whole. These performance data is stored after each

iteration to find an optimal configuration setting for each

individual microservice.

IV. INITIAL EVALUATION RESULTS

All the microservices are developed in Java and deployed

as Docker containers in an Amazon AWS EC2 t2.medium

instance with 2vCPUs and 4GB of RAM. The communication

among microservices are done by exchanging messages via a
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Fig. 2. Architecture overview.
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Fig. 3. Evaluation results of Grid search optimization.

NATS broker instance. The test setup consists of six compo-

nents as shown in Figure 2: Dashboard (web application), Web

Server, Database, NATS message broker, Microservice Opti-

mizer and Microservices. The arrows and numbers explains the

optimization workflow and how the components communicate

with each other. The Dashboard allows operators to select a

set of parameters to be included in the optimization process. In

our prototype, tunable parameters include Java virtual machine

(JVM or GraalVM) and Docker parameters, which can be

further categorized into four main types: Boolean, Discrete,

Byte, and Categorical parameters. With an initial set of 11

parameters, the search space has in total 177,147 configuration

combinations. The Web server together with the Microservice
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Fig. 4. Evaluation results of Random search in compared with Grid search.

Optimizer coordinate the iteration through the search space

defined by the operator. The Database stores evaluation results,

while the NATS message broker is used by both internal

communication among microservices and the communication

between the Web Server and the Microservice Optimizer.

Figure 3 shows the average runtime per configuration while

using Grid search, sorted by latency. Please note that the red

area marks incomplete runs. The latency of a non-optimized

baseline run is marked with a red line with an average end-

to-end latency of 0.8100s. The best performing configuration

identified by Grid search has an average latency of 0.7245,

yield 10.5556% improvements.

Figure 4 shows the average runtime per configuration in

Random search (black) and Gird search (colored), sorted by

latency. The evaluation results show that, the best performing

configuration identified by Random search has an average

latency of 0.7445, yield 8.0864% improvements, which is not

as optimal as the best performing configuration identified by

Grid search. However, using Random search can find a near-

optimal solution 84% time faster than Grid search approach.

V. CONCLUSIONS

This short paper presents our immediate results of a new

microservice optimizer based on two methods, which are

Grid search and Random search. Our first prototype focuses

on optimizing Java virtual machines and Docker container

parameters; therefore, this approach can be applied to every

microservice-based application that uses these technologies.

Our evaluation shows that our microservice optimizer can

find configurations that reach a notable improvement over a

default, non-optimized set of parameters. In addition, when

comparing the two methods, the Random search-based ap-

proach can identify a comparable configuration in terms of

latency performance while reduce the calculation time signifi-

cantly. In the next phases, we will expand the parameter search

space and investigate other optimization strategies.
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