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Abstract—In the last few years, the cloudification of applica-
tions requires new concepts and techniques to fully reap the
benefits of the new computing paradigm. Among them, the
microservices architectural style, which is inspired by service-
oriented architectures, has gained attention from both industry
and academia. However, decomposing a monolith into multiple
microservices also creates several challenges across the applica-
tion’s lifecycle. In this work, we focus on the operation aspect
of microservices, and present our novel proposal to enable
self-optimizing microservices systems based on grid search and
random search techniques. The initial results show our approach
is able to optimize the latency performance of microservices to
up to 10.56%.

Index Terms—microservices, optimization, hyperparameter op-
timization, grid search, random search

I. INTRODUCTION

In essence, microservices encourage a more agile and mod-
ular approach to the whole software lifecycle, from design,
implementation, operation, to maintenance. By decompos-
ing monoliths into smaller, independently deployable units,
microservices can achieve a high level of scalability and
resiliency [1].

However, this design also comes at a cost: a microservices-
based application comprises many distributed services, thus
requires enormous efforts to manage individual services. In
addition, a good optimization technique also needs to consider
the complex interactions among microservices while tuning
interference parameters.

The increasing complexity of software systems in general
and cloud-based applications in particular gradually make
manual optimization impracticable. Motivated by that, this
work aims to automate the performance optimization process
using techniques known from machine learning, especially in
hyperparameter optimization problems.

II. USE CASE

We evaluate our approach using an existing microservices-
based application, which can automatically calculate the envi-
ronmental toll for vehicles based on the pollution level [2]. The
location coordinates of each vehicle are fetched in real-time
into the application, where they will be processed by a chain
of microservices as depicted in Figure [I] To evaluate the end-
to-end latency performance as well as the latency performance
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Fig. 1. Overview processing flow of the air pollution-aware toll system.

by each microservice, we apply a technique called Distributed
Tracing [3|.

III. BACKGROUND & CONCEPT

Optimizing a microservices-based application with complex
interference among various parameters has been identified as
an exceptionally complex and challenging problem [4]]. Several
works have focused on employing new techniques to automate
the optimization process, such as Bayesian optimization [5],
Meta-heuristic optimization [6].

In this work, we proposed using Grid search and Random
search, which have been used extensively for optimizing hy-
perparameters in machine learning, to optimize the microser-
vices’ configuration during runtime. These two approaches
require a bounded search space, which includes possible
values for each parameter. While Grid search evaluates every
position in the grid, Random search only randomly evaluates
parameter combinations.

In this work, we develop a new software component called
Microrservice optimizer, which automatically iterates through
the parameters selected by the operator (the search space),
generates new configuration combinations, applies them to the
microservices, and observes the performance of the application
as a whole. These performance data is stored after each
iteration to find an optimal configuration setting for each
individual microservice.

IV. INITIAL EVALUATION RESULTS

All the microservices are developed in Java and deployed
as Docker containers in an Amazon AWS EC2 t2.medium
instance with 2vCPUs and 4GB of RAM. The communication
among microservices are done by exchanging messages via a
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Fig. 3. Evaluation results of Grid search optimization.

NATS broker instance. The test setup consists of six compo-
nents as shown in Figure 2} Dashboard (web application), Web
Server, Database, NATS message broker, Microservice Opti-
mizer and Microservices. The arrows and numbers explains the
optimization workflow and how the components communicate
with each other. The Dashboard allows operators to select a
set of parameters to be included in the optimization process. In
our prototype, tunable parameters include Java virtual machine
(JVM or GraalVM) and Docker parameters, which can be
further categorized into four main types: Boolean, Discrete,
Byte, and Categorical parameters. With an initial set of 11
parameters, the search space has in total 177,147 configuration
combinations. The Web server together with the Microservice
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Fig. 4. Evaluation results of Random search in compared with Grid search.

Optimizer coordinate the iteration through the search space
defined by the operator. The Database stores evaluation results,
while the NATS message broker is used by both internal
communication among microservices and the communication
between the Web Server and the Microservice Optimizer.

Figure [3] shows the average runtime per configuration while
using Grid search, sorted by latency. Please note that the red
area marks incomplete runs. The latency of a non-optimized
baseline run is marked with a red line with an average end-
to-end latency of 0.8100s. The best performing configuration
identified by Grid search has an average latency of 0.7245,
yield 10.5556% improvements.

Figure [] shows the average runtime per configuration in
Random search (black) and Gird search (colored), sorted by
latency. The evaluation results show that, the best performing
configuration identified by Random search has an average
latency of 0.7445, yield 8.0864% improvements, which is not
as optimal as the best performing configuration identified by
Grid search. However, using Random search can find a near-
optimal solution 84% time faster than Grid search approach.

V. CONCLUSIONS

This short paper presents our immediate results of a new
microservice optimizer based on two methods, which are
Grid search and Random search. Our first prototype focuses
on optimizing Java virtual machines and Docker container
parameters; therefore, this approach can be applied to every
microservice-based application that uses these technologies.

Our evaluation shows that our microservice optimizer can
find configurations that reach a notable improvement over a
default, non-optimized set of parameters. In addition, when
comparing the two methods, the Random search-based ap-
proach can identify a comparable configuration in terms of
latency performance while reduce the calculation time signifi-
cantly. In the next phases, we will expand the parameter search
space and investigate other optimization strategies.
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