SIMILARITY NETWORK FOR SEMANTIC WEB SERVICES
SUBSTITUTION

Chantal Cherifi

LE2I Laboratory, Burgundy University, France
chantal.cherifi@iut-dijon.u-bourgogne.fr

Abstract

Web services substitution is one of the most challenging tasks for automating the composition process
of multiple Web services. It aims to improve performances and to deal efficiently with Web services
failures. Many existing solutions have approached the problem through classification of substitutable
Web services. To go a step further, we propose in this paper a network based approach where nodes
are Web services operations and links join similar operations. Four similarity measures based on the
comparison of input and output parameters values of Web services operations are presented. A
comparative evaluation of the topological structure of the corresponding networks is performed on a
benchmark of semantically annotated Web services. Results show that this approach allows a more
detailed analysis of substitutable Web services.

Keywords - Semantic Web services, Functional similarity, Similarity network, Substitution

1 INTRODUCTION

From the early 2000 until nowadays, Web services have continuously gaining popularity with
providers, business partners and clients because of the many advantages of the concept. The basic
principles give the system flexibility and high availability. These platform-independent modular units of
application logic accessible via standard Web protocols are also very attractive for their ability to be
composed into more complex and more valuable services. The ultimate goal is to build new
applications with little or no direct human intervention using sufficiently rich, machine-readable
descriptions of Web services. In this scenario, applications are no longer written manually but
assembled from a set of Web services that are available in the distributed environment of the Internet.

As a growing number of Web services are available on the Web and in organizations, finding and
composing the right set of Web services is a very complex issue. Indeed, Web services are being
developed independently by providers without any centralized coordination. Furthermore, they are
subject to changes, relocations or even suppression and prone to failures or attacks. This can lead to
temporally or definitive unavailability. In such a volatile and dynamic environment, composition is a
highly complex task. A great deal of work on service architecture and semantic Web has been devoted
to address the problem of Web service discovery. Discovery deals with finding a set of services that
corresponds to a predetermined user request. However, after a composite service has been deployed,
one or more constituents of the composite service may become unavailable. Hence, there arises a
need to replace such components with other components while maintaining the overall functionality of
the composite service. In order to avoid this drawback, Web service substitution intends to replace
failing Web services.

Web service substitution is one of the most advanced tasks within the composition life cycle. It already
has triggered a large amount of research. Work in this area mainly focuses on functional and non-
functional properties, like Quality of Service (QoS), to classify substituable Web services. In this paper,
we concentrate on the functional properties of Web services. In order to state that a Web service may
replace another one, the Web services descriptions must be analyzed. Information on functional
properties can be found in the textual description or in the service name. But the most probative and
direct information is nested within the interfaces that contain operations name, and parameters name
and type. In [1], Web services are organized into communities of substitutable services. Each
community is associated with a specific functionality represented by an ontological concept. A
functionality is materialized by a set of operations. Hence, Web services within a community meet the
same need and are defined as functionally similar. In [2], similar Web services are grouped into
clusters. Parameters and operations names are associated to an ontological concept which is
processed by a lexical similarity measure. In [3], two degrees of interface similarity called equivalent

and replacing are defined,. Equivalent Web services have the same number of operations and
parameters, and parameters are of the same type. A replacing Web service has an additional
functionality.

In order to improve the results of the substitution process, it is important to increase the number of
substituable Web services by offering a large range of possibilities. Furthermore, classification may be
improved by a more structured organization of the Web services within the communities. Our work
follows this line. We propose a network model to represent sets of similar Web services operations.
Operations are the nodes and a link account for a similarity relationship between two operations. The
main contribution of this work is on the definition and analysis of similarity measures for the functional
comparison among Web services. The proposed network model allows the automated identification of
substitutable Web services. It differentiates with majority of works efficient mainly for domain-based
discovery, but not well suited for the substitution process.

The paper is organized as follows. In section 2, we introduce the similarity network model. We present
and comment the similarity functions used in order to cover different situations occurring while
searching for a substitutable Web service. In section 3, the presentation of the benchmark used in this
study is followed by experimental results on networks topology and components structure of the
networks build according to these definitions. Finally, in section 4 the reader will find our conclusion
and directions for future work.

2 NETWORK MODEL

In this paper, we focus on the functional aspect of semantic Web services. We restrict the definition of
a Web service to a set of operations with their input and output parameters. We use the following
notations. A Web service is represented by a Greek letter. Each operation labeled by a digit contains a
set of input parameters noted |, and a set of output parameters noted O. Each parameter is associated
to an ontological concept represented by a letter. Fig. 1 represents a Web service a with two
operations 1 and 2, input parameter ontological concepts |y = {a,b}, I, = {c}, and output parameter
ontological concepts O; = {d}, O, = {e,f}. In the following, we use for short the word “parameter” rather
than “parameter ontological concept” to describe the semantics associated to a parameter.

”—»0\ ®
@~>®;’8

Fig. 1. Schematic representation of a Web service a with two operations 1 and 2 and their parameters.

The similarity network model is based on the similarity between operations. We consider operations
rather than Web services as atomic entities for two reasons. First, operations are the entities that are
ultimately invoked. Second, it allows getting a more detailed analysis of the similarities. We define a
similarity network as a graph whose nodes correspond to operations and links indicate a certain level
of similarity between these operations. The nature of the similarity relationship is extremely important.
It can be defined in several ways. We propose four operators that reflect different levels of functional
similarity. These operators use a semantic matching function to compare the sets of input and output
parameters. Thereafter, we describe the four similarity functions that we use to build the networks and
we give their interpretation.

2.1 Similarity Functions

The four similarity functions are based on the work of [4] and [5] for service discovery. Several
operators are presented and used to compare sets of ontological concepts in semantic descriptions.
The definition of these operators is made on the key assumption that a user specifies his needs in
terms of what he wants to achieve by using a service. In other words, the user knows the goals he
wants to get, but the way to reach them is not a major concern. To meet the needs, the request
answer can be provided by an individual service or by a set of interacting services. The cornerstones
elements are the goals pursued by the user, and they are represented by the output parameters of the
service.

We selected four of these operators that reflect different matching situations between user’s goals and
the outputs provided by the services. We adapted these operator definitions to our goal which is to

determine a similarity value between two sets of parameters. The basic idea is that two services are
substitutable if they allow to reach the same goal eventually using composite services.

FullSim is defined by analogy with the operator Match which reflects the fact that all the user needs
are met. PartialSim inspired by Partial match corresponds to the situation where only a part of the
goals is satisfied. Therefore, additional services will be needed to satisfy the request. The two other
operators that we selected were introduced in [5] to take into account two situations ignored thus far.
ExcessSim based on Excess match which expresses the case where the published service fully meets
the goals of the user and provides more information. RelationSim is inspired from Relation match
which has been introduced for situations where a service can meet the goals but the user cannot
provide the inputs to invoke the service. To use such services, additional ones are required.

The similarity functions (FullSim, PartialSim, ExcessSim and RelationSim) are defined in terms of set
relations. Suppose we want to compare two operations i and j. |; and |; are respectively the sets of
input parameters of i and j. O; and O; are respectively the sets of output parameters of i and j. We
hence must compare |; with |, and O; with O;.

FullSim means "full similarity”. Two operations i and j are fully similar if they offer exactly the same set
of output parameters (O, = O;) and if they have overlapping inputs (i N |;# @).

PartialSim means "partial similarity”. Operation j is partially similar to operation i if some output
parameters are missing in j (O; 2 O)) and if the two sets of input parameters overlap (I, N I; # @).
ExcessSim means “excess similarity”. An operation j is similar with excess to an operation i if j
provides all the outputs of i plus additional ones (O; c O)) and if j has at most the inputs of (l; 2).
RelationSim means "relational similarity". Two operations i and j have a relational similarity if they
have exactly the same outputs (O; = O)) and if they do not share any common input (I N |;= @).

FullSim and PartialSim are symmetric functions, while ExcessSim and RelationSim are asymmetrics.

To achieve the comparison between individual parameters, we take as a basis the classical exact and
fail subsumption relationships introduced in [6]. Let two parameters to be compared. In an exact
matching, two parameters are similar if they are described by the same ontological concept. The fail
matching means that there is no subsumption relation between the concepts associated to the
parameters.

Each similarity function allows building a specific network. In the following, we use the operators name
to refer to the networks obtained with the different similarity functions. FullSim and RelationSim
networks, due to the symmetrical nature of the similarity functions, are non-oriented networks.
PartialSim and ExcessSim, which are derived from asymmetric functions, are oriented networks.

2.2 Interpretation of the Functions

To illustrate the different situations, we show through an example how the similarity functions can be
interpreted. Let consider the six operations in Tab. 1.

Tab. 1. Six operations labeled from 1 to 6 with their input and output parameters sets.

Input parameters Output parameters
1 | k={ZIP} O:={CITY-NAME}
2 | I, ={ZIP, GEOGRAPHICALREGION} O, ={CITY-NAME}
3 | L,={ZIP} Os={CITY-NAME, LONGITUDE, LATITUDE}
4 | 1,={2IP} O,={WEATHERREPORT}
5 | Is ={CITY-NAME} Os={WEATHERREPORT}
6 | ls={CITY-NAME} Os = (WEATHERREPORT, WEATHERREPORTSUBSCR}

As stated previously, the user goal is the most important aspect to be considered. For example,
suppose a user who wants to get the weather report of his city by providing the name and zip code of
this city. Searching for operations that satisfy both the inputs and outputs can be too restrictive.
Hence, we did not consider this case when designing the similarity functions.

FullSim similarity can be considered as the second best solution, since it includes the expected
outputs and some inputs of the request. Operations 4 and 5 are, in this case, two potential candidates.
If no operation meets these criteria, the user can relax the constraints on the goal. Suppose that
operations 4 and 5 are unavailable, operation 6 which is similar with excess (ExcessSim) to the
request, may be the second possibility. It provides a subscription in addition to the weather report. The
user may not be interested by this result if he is looking for a free service and if the subscription is a
paying service. In another cases, he might be interested in additional outputs such as a list of weather
reports for nearby cities, for example.

If the user is always searching for a weather report, but he can only provide a zip code. When
operation 4 is unavailable, then no operation can be found using FullSim, PartialSim or ExcessSim
similarities. In this case, operation 5 can satisfy the need. It has a relational similarity (RelationSim)
with the request because its outputs are identical to the goal, but inputs have nothing in common. This
operation cannot be used alone, but it can leads to the goal if it is composed with other operations. In
this case, operation 1 can first be invoked and its output parameter, a city name, used to invoke
operation 5.

It is important to highlight that the proposed similarity functions have been designed to be
complementary. FullSim function is the best solution. Then, PartialSim, ExcessSim and RelationalSim
functions can give satisfaction to specific situations that are directly related to the context, as we have
seen in the example above.

3 STRUCTURE OF THE SIMILARITY NETWORKS

We first present the Web services benchmark used in our experiment. Four similarity networks
corresponding to the four similarity functions are built from these data. We provide a global view of the
networks and we make a comparison between the similarity networks components and the notion of
domain used in Web service classification. Concentrating on the components, we then take a local
point of view by studying and comparing the structure of the components from the different networks.

The similarity networks are extracted from SAWSDL-TC [7]. This SAWSDL test collection comes from
SemWebCentral, an open source development Web site for the semantic Web. SAWSDL-TC is a
service retrieval collection to support the evaluation of the performance of SAWSDL semantic Web
service matchmaking algorithms. Although it has not been designed to test Web services substitution
models, it best suits our requirements. It is partially composed of real-world Web services that are
semantically described. The sets of Web services with similar functionalities are large enough to form
reasonable communities. It contains 894 single operation descriptions and 654 are classified into 7
domains. Among them, economy, education and travel, contain more than 80% of the descriptions.
Communication, food, medical and weapon contain the remaining 20% and their content is relatively
uniform. Economy, education, travel and communication are respectively organized into 10, 5, 6 and 2
sub-domains.

3.1 Global Structure

The networks exhibit the same structure. A set of small components stand along with isolated nodes.
Tab. 2 presents the number of components and proportion of isolated nodes of the networks. Isolated
nodes are quite numerous in all the networks. According to these results we can distinguish two types
of networks. The first one includes the FullSim, PartialSim and ExcessSim networks while RelationSim
is on the second group. Indeed, in the former the networks exhibit similar basic properties. PartialSim
presents the lowest proportion of isolated nodes followed by ExcessSim then Fullsim. This behavior is
in accordance with the restrictions imposed by the similarity definitions. In other words, there is more
Web services that share common output and common inputs than Web services with exactly the same
outputs. The differences observed between PartialSim and ExcessSim is problably due to a tougher
constraint on the inputs in the later. Similarly, the number of components is quite comparable.
Compared to the networks in the first group, RelationSim is quite different. It has at least two times
less isolated nodes and the number of components is two times higher. This result suggests that there
is a lot of operations that can be used in a substitution process through a composition. It implies to
provide other operations to make the connection between the inputs of the desired operation and the
inputs of the one extracted from the RelationSim Network.

Tab. 2. Basic properties of the similarity networks.

FullSim | PartialSim | ExcessSim | RelationSim
Proportion of isolated nodes | 75% 57% 62% 31%
Number of components 42 59 66 121

Note that the distribution of the operations does not reflect the organization of the collection into
domains. This structure rather reflects the decomposition of the collection into a reasonable number of
sets of similar operations. This is an interesting property. If networks had been composed only of
isolated nodes or if we had observed the presence of a giant component, those situations will have
lead to an inefficient distribution of the operations. The notion of domain is hence not relevant for
substitution.

3.2 Local Structure

In order to have a more detailed idea on the influence of the different similarity functions on the
networks topology, we investigate and compare the structure of the components. Results show that
we can distinguish two types of networks according to the local structure. In FullSim and RelationSim
networks, components are organized into cliques. They are dominated by stars in PartialSim and
ExcessSim networks. Fig. 2 presents FullSim and ExcessSim networks, without the isolated nodes,
that clearly illustrate those two situations.

v ® * * * *

® + *
* .
3 3
. .
® . L3
. ® £ & *
* @ @ + . . .
® ® * *
. - .
* * ® ®
3 ® ® 3 . . .
+ ® ® + 3 * 3
3 ® ® 3 . ® ®
. . . . 3 3 3
[® ® @ ., * L " » » LN
» . . . a2
b S P » e ® o » L
- P . % ™ e g 0 " ® o S
° * " . * .
® " e * - . .
* [L4 * L . ® ®
° * » » . L »
L] - L * ® ® L
. - . ¥ . * ®
- » ® - ®
p .
L}
®
® . +* s . s * ® . . . [}
.
® ®
* ® * » . * » . L] °
. . * P ® * . . - » * ¥ *
* ® " * L]
.
P, F d ® - - » » - * -
() . - ® * ® * . ® ®
®, ® hd
» ® » 3
* ®
° » s
o ® +® . L o .+
™ ® b . & ®
s ® * * 8 + 8 o ® ® ® ® *
o . ® - - ® * ®
.
ot
. p ® » * @ * ®
® . & * - ® . . .
® * » ® * ®
o L .
® * * @ + @
. . . ® » e . . .
L3 . . * - - . . -
® * * ® ® @ ® + +
L3 L3 3 + * * L3 L *

4.1 ExcessSim
Fig. 2. FullSim and ExcessSim similarity networks where isolated nodes have been discarded.
A. Clique as a basic pattern

The clique basic pattern in the FullSim and RelationSim networks give rise to different situations. To
illustrate this feature, we present two components of the FullSim network.

The first one is shown on Fig. 3. It contains the get_ BOOK and getEBook operations which form a 4-
clique. They all produce a single parameter, Book, and they share at least one input parameter. The
getEbook operations signatures are identical while getBook and getEbook have one common input
parameter (Title). This component includes operations that are all similar according to the FullSim

definition. They are all substitutable. If one wants to choose one of them for substitution, they can be
distinguishable by their QoS features.

® get_BOOK
* getEBock getEBook | get BOOK
Input parameters Title, User Title
® tEBook Output parameters Book Book

.gBtEBDDk

Fig. 3. A 4-cligue component of the FullSim network and its operations signature.

The second component on Fig. 4 contains six operations named get_ LENDING. They are organized
as follow: two 3-cliques and one 2-clique. The six operations have a single and same output
parameter (Lending). On the right side of the figure, the links between the six operations are labeled
by the concept of the input parameters shared by two adjacent operations. Unlike in the previous
case, operations in this component are not all similar according to the Fullsim definition. Only
operations that are within a clique follow this definition. This component includes three sets of similar
operations which are organized into cliques. Two operations that are not in the same clique are similar
according to the RelationSim definition. They have common outputs but their inputs do not overlap.
Hence, when searching for substitutable operations in a FullSim component, all the cliques must be
considered independently.

® et LENDING

.get LEMDIMG .QEU—ENDING

¥ et LENDING

® et LENDING
® et LENDING

Fig. 4. A component of the FullSim network with 3 cliques (links labels are common inputs of two
adjacent operations).

Distribution of similar operations within components allows classifying them according to their
functionality. A component is a set of operations that have identical outputs. Operations with at least
one common input are grouped within cliques in this component. A component is not a monolithic
block of similar operations. It can be decomposed into a set of communities characterized by a clique.
The clique pattern in the components allows a finer characterization of the notion of operations
community.

Note that in the RelationSim network, the clique organization is more pronounced than in the FullSim
network and some big components form a complete graph.

B. Star as a basic pattern

The structure of the components in PartialSim and ExcessSim networks clearly differs from the
previous ones. Whereas FullSim and RelationSim components are clique-like, PartialSim and
ExcessSim components are rather organized as stars. We consider the PartialSim network in order to
illustrate the two most typical situations observed in these cases.

Fig. 5 shows a star component of the PartialSim network. The get_FILM central operation produces
less output parameters compared to peripheral operations. It produces only the parameter Film while
the five others produce additional ones. It also has common input parameters with the peripheral
operations. In this case, these six operations share a unique parameter (Title). The peripheral

operations have a unique and same potential substitute. This substitute, which is pointed by the
others, can replace them being aware that it provides less output that may be desired.

3
.get_FlLM_T.ﬁXFHEEPHIEE_QU.ﬂ.LITY
4 2 Qutput parameters

Film, RecommendedPrice, Quality
Film, TaxedPrice, Quality

@ .
] get FILM_PRICE_QUALTy | 9etFILM_MAXPRICE_QUALITY [| Film
e 1 2 | Film, MaxPrice, Quality
5 get_FILM 3 | Film, TaxedFreePrice, Qualit
4 | Film, Price, Qualit
'get_FILM_HEEDMMENDEDF‘HIEE_BU.&LITY 5 y
6

6

.get_FILM_T.f-‘-XEDF'FHEE_QU.L‘-.LITY

Fig. 5. A 6-nodes star-like component of the PartialSim network and its operations output parameters.

Fig. 6 shows a component with 15 nodes made up with nested stars. Four operations may be replaced
by others: get DESTINATION_HOTEL, get ACTIVITY_HOTEL, and two get SPORTS_HOTEL
operations. Unlike in the previous example, this component contains several substitutes. Some may
replace only one operation; the get HOTEL at the left end side is only a substitute for
get ACTIVITY_HOTEL. Others may replace several operations; all the get HOTEL operations of the
right end side can be substitutes for get DESTINATION_HOTEL and the two get SPORTS_HOTEL
operations. Like for the clique organization, the concept of similarity can be refined within a
component. It occurs when the component does not simply contain a simple basic pattern, but a more
complex structure built from this pattern.

@
et _HOTEL
- & el HOTEL
Oget_HDTEL @
get_HOTEL
@ & =
t_SPORTS_HOTEL
gel_HOTEL gel_&CTIWITY_HOTEL gel_ _ ® et HOTEL
® et SPORTS_HOTEL
&
get_HOTEL F (et DESTINATION_HOTEL

© et HOTEL

O
® o HOTE et HOTEL 2#-HOTEL

Fig. 6. A 15-nodes component of the PartialSim network with nested stars.

When observing the same components in the ExcessSim network, they differ in two points. The links
are oppositely oriented and some of them disappear if one operation has more input parameters than
the one to which it is compared.

5 CONCLUSION

In this paper, we analyze the structure of similarity networks extracted from SAWSDL-TC1. The
networks are built from a model that represents similarity relationships between Web services
operations functionalities. Two operations are similar if they share common features regarding their
input and output parameter sets. We defined a set of functions that represent different degrees of
similarity between operations. We compared the structure of the networks obtained with the different
similarity functions. This comparative study shows that the networks share the same global structure.
They are characterized by a large number of isolated nodes. It evolves from 30% to 75% depending
on the more or less restrictive definition of similarity function. The remaining nodes are organized into
a number of small components of similar operations. From the components analysis, we identified two
classes of networks. In FullSim and RelationSim networks, the organizational basic pattern is the
clique while it is a star in PartialSim and ExcessSim networks.

In clique structured networks, a component is a clique or a set of cliques. In a FullSim component, all
the operations of a clique have identical output parameters and their input parameters overlap. Two

operations that do not belong to the same clique have disjoint input parameters. In the RelationSim
network, components are strongly connected and can be complete graphs.

In the star structured networks, a component is a star or a set of stars. In a PartialSim component,
operations that are pointed by a link have less output parameters than the operations pointing toward
them. Two linked operations have overlapping input parameters. Two operations that do not belong to
the same star have disjoint input parameters. In an ExcessSim component, links are oppositely
directed compared to the same component in the PartialSim network. Additionaly, some links
disappear because of the restriction on the input parameters sets.

This proposed classification reveals two levels of similarity. The first one is the component and the
second one is the component basic pattern (clique or star). A basic pattern within a component is a
community that groups a set of similar and substitutable operations.

This analysis allowed an accurate understanding of the functional similarity relationships between
Web services operations. We are extending this work by using the similarity networks as a structure to
discover and substitute Web services during the composition process.

6 REFERENCES

[1] Y. Taher, D. Benslimane, M.-C. Fauvet, and Z. Maamar, “Towards an Approach for
Web Services Substitution,” in /0th International Database Engineering and
Applications Symposium, 2006, pp. 166—173.

[2] A. Konduri and C. Chan, “Clustering of Web Services Based on WordNet Semantic
Similarity,” University of Akron, USA, Akron, 2008.

[3] Z. Azmeh, M. Huchard, C. Tibermacine, C. Urtado, and S. Vauttier, “WSPAB: A Tool
for Automatic Classification & Selection of Web Services Using Formal Concept
Analysis,” in Sixth European Conference on Web Services, 2008, pp. 31-40.

[4] U.Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel, “Automatic Location of Web
Services,” ESWC. Heraklion, Crete, Greece , 2005.

[5] U. Kiister and B. Konig-Ries, “Evaluating semantic web service matchmaking effec
tiveness based on graded relevance ,” in Proc. of the 2nd International Workshop SMR

2 on Service Matchmaking and Resource Retrieval in the Semantic Web at ISWC ,
2008.

[6] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara, “Semantic Matching of Web
Services Capabilities,” in The Semantic Web - ISWC 2002 - LNCS, 2002, vol. 2342, pp.
333-347.

[7] InfoEther and B. Technologies, “SemWebCentral,” 2004. [Online]. Available:
http://wwwprojects.semwebcentral.org/.

