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Abstract 

Web services substitution is one of the most challenging tasks for automating the composition process 
of multiple Web services. It aims to improve performances and to deal efficiently with Web services 
failures. Many existing solutions have approached the problem through classification of substitutable 
Web services.  To go a step further, we propose in this paper a network based approach where nodes 
are Web services operations and links join similar operations. Four similarity measures based on the 
comparison of input and output parameters values of Web services operations are presented. A 
comparative evaluation of the topological structure of the corresponding networks is performed on a 
benchmark of semantically annotated Web services. Results show that this approach allows a more 
detailed analysis of substitutable Web services. 
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1 INTRODUCTION  

From the early 2000 until nowadays, Web services have continuously gaining popularity with 
providers, business partners and clients because of the many advantages of the concept. The basic 
principles give the system flexibility and high availability. These platform-independent modular units of 
application logic accessible via standard Web protocols are also very attractive for their ability to be 
composed into more complex and more valuable services. The ultimate goal is to build new 
applications with little or no direct human intervention using sufficiently rich, machine-readable 
descriptions of Web services. In this scenario, applications are no longer written manually but 
assembled from a set of Web services that are available in the distributed environment of the Internet. 

As a growing number of Web services are available on the Web and in organizations, finding and 
composing the right set of Web services is a very complex issue. Indeed, Web services are being 
developed independently by providers without any centralized coordination. Furthermore, they are 
subject to changes, relocations or even suppression and prone to failures or attacks. This can lead to 
temporally or definitive unavailability. In such a volatile and dynamic environment, composition is a 
highly complex task. A great deal of work on service architecture and semantic Web has been devoted 
to address the problem of Web service discovery. Discovery deals with finding a set of services that 
corresponds to a predetermined user request. However, after a composite service has been deployed, 
one or more constituents of the composite service may become unavailable. Hence, there arises a 
need to replace such components with other components while maintaining the overall functionality of 
the composite service. In order to avoid this drawback, Web service substitution intends to replace 
failing Web services. 

Web service substitution is one of the most advanced tasks within the composition life cycle. It already 
has triggered a large amount of research. Work in this area mainly focuses on functional and non-
functional properties, like Quality of Service (QoS), to classify substituable Web services. In this paper, 
we concentrate on the functional properties of Web services. In order to state that a Web service may 
replace another one, the Web services descriptions must be analyzed. Information on functional 
properties can be found in the textual description or in the service name. But the most probative and 
direct information is nested within the interfaces that contain operations name, and parameters name 
and type. In [1], Web services are organized into communities of substitutable services. Each 
community is associated with a specific functionality represented by an ontological concept. A 
functionality is materialized by a set of operations. Hence, Web services within a community meet the 
same need and are defined as functionally similar. In [2], similar Web services are grouped into 
clusters. Parameters and operations names are associated to an ontological concept which is 
processed by a lexical similarity measure. In [3], two degrees of interface similarity called equivalent 



and replacing are defined,. Equivalent Web services have the same number of operations and 
parameters, and parameters are of the same type. A replacing Web service has an additional 
functionality. 

In order to improve the results of the substitution process, it is important to increase the number of 
substituable Web services by offering a large range of possibilities. Furthermore, classification may be 
improved by a more structured organization of the Web services within the communities. Our work 
follows this line. We propose a network model to represent sets of similar Web services operations. 
Operations are the nodes and a link account for a similarity relationship between two operations.  The 
main contribution of this work is on the definition and analysis of similarity measures for the functional 
comparison among Web services. The proposed network model allows the automated identification of 
substitutable Web services. It differentiates with majority of works efficient mainly for domain-based 
discovery, but not well suited for the substitution process. 

The paper is organized as follows. In section 2, we introduce the similarity network model. We present 
and comment the similarity functions used in order to cover different situations occurring while 
searching for a substitutable Web service. In section 3, the presentation of the benchmark used in this 
study is followed by experimental results on networks topology and components structure of the 
networks build according to these definitions. Finally, in section 4 the reader will find our conclusion 
and directions for future work. 

2 NETWORK MODEL 

In this paper, we focus on the functional aspect of semantic Web services. We restrict the definition of 
a Web service to a set of operations with their input and output parameters. We use the following 
notations. A Web service is represented by a Greek letter. Each operation labeled by a digit contains a 
set of input parameters noted I, and a set of output parameters noted O. Each parameter is associated 
to an ontological concept represented by a letter. Fig. 1 represents a Web service α with two 
operations 1 and 2, input parameter ontological concepts I1 = {a,b}, I2 = {c}, and output parameter 
ontological concepts O1 = {d}, O2 = {e,f}. In the following, we use for short the word “parameter” rather 
than “parameter ontological concept” to describe the semantics associated to a parameter.   

 

Fig. 1. Schematic representation of a Web service α with two operations 1 and 2 and their parameters. 

The similarity network model is based on the similarity between operations. We consider operations 
rather than Web services as atomic entities for two reasons. First, operations are the entities that are 
ultimately invoked. Second, it allows getting a more detailed analysis of the similarities. We define a 
similarity network as a graph whose nodes correspond to operations and links indicate a certain level 
of similarity between these operations. The nature of the similarity relationship is extremely important. 
It can be defined in several ways. We propose four operators that reflect different levels of functional 
similarity. These operators use a semantic matching function to compare the sets of input and output 
parameters. Thereafter, we describe the four similarity functions that we use to build the networks and 
we give their interpretation. 

2.1 Similarity Functions 

The four similarity functions are based on the work of [4] and [5] for service discovery. Several 
operators are presented and used to compare sets of ontological concepts in semantic descriptions. 
The definition of these operators is made on the key assumption that a user specifies his needs in 
terms of what he wants to achieve by using a service. In other words, the user knows the goals he 
wants to get, but the way to reach them is not a major concern. To meet the needs, the request 
answer can be provided by an individual service or by a set of interacting services. The cornerstones 
elements are the goals pursued by the user, and they are represented by the output parameters of the 
service. 

We selected four of these operators that reflect different matching situations between user’s goals and 
the outputs provided by the services. We adapted these operator definitions to our goal which is to 
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determine a similarity value between two sets of parameters. The basic idea is that two services are 
substitutable if they allow to reach the same goal eventually using composite services. 

FullSim is defined by analogy with the operator Match which reflects the fact that all the user needs 
are met. PartialSim inspired by Partial match corresponds to the situation where only a part of the 
goals is satisfied. Therefore, additional services will be needed to satisfy the request. The two other 
operators that we selected were introduced in [5] to take into account two situations ignored thus far. 
ExcessSim based on Excess match which expresses the case where the published service fully meets 
the goals of the user and provides more information. RelationSim is inspired from Relation match 
which has been introduced for situations where a service can meet the goals but the user cannot 
provide the inputs to invoke the service. To use such services, additional ones are required. 

The similarity functions (FullSim, PartialSim, ExcessSim and RelationSim) are defined in terms of set 
relations. Suppose we want to compare two operations i and j. Ii and Ij are respectively the sets of 
input parameters of i and j. Oi and Oj are respectively the sets of output parameters of i and j. We 
hence must compare Ii with Ij and Oi with Oj. 
FullSim means "full similarity". Two operations i and j are fully similar if they offer exactly the same set 
of output parameters (Oi = Oj) and if they have overlapping inputs (Ii ⋂ Ij ≠ ∅).  
PartialSim means "partial similarity”. Operation j is partially similar to operation i if some output 
parameters are missing in j (Oi ⊃ Oj) and if the two sets of input parameters overlap (Ii ⋂ Ij ≠ ∅). 
ExcessSim means “excess similarity”. An operation j is similar with excess to an operation i if j 
provides all the outputs of i plus additional ones (Oi ⊂ Oj) and if j has at most the inputs of (Ii ⊇ Ij).  
RelationSim means "relational similarity". Two operations i and j have a relational similarity if they 
have exactly the same outputs (Oi = Oj) and if they do not share any common input (Ii ⋂ Ij = ∅). 
FullSim and PartialSim are symmetric functions, while ExcessSim and RelationSim are asymmetrics. 

To achieve the comparison between individual parameters, we take as a basis the classical exact and 
fail subsumption relationships introduced in [6]. Let two parameters to be compared. In an exact 
matching, two parameters are similar if they are described by the same ontological concept. The fail 
matching means that there is no subsumption relation between the concepts associated to the 
parameters.  

Each similarity function allows building a specific network. In the following, we use the operators name 
to refer to the networks obtained with the different similarity functions. FullSim and RelationSim 
networks, due to the symmetrical nature of the similarity functions, are non-oriented networks. 
PartialSim and ExcessSim, which are derived from asymmetric functions, are oriented networks. 

2.2 Interpretation of the Functions 

To illustrate the different situations, we show through an example how the similarity functions can be 
interpreted. Let consider the six operations in Tab. 1. 

Tab. 1. Six operations labeled from 1 to 6 with their input and output parameters sets. 

 Input parameters Output parameters 

1 I1={ZIP} O1={CITY-NAME} 

2 I2 ={ZIP, GEOGRAPHICALREGION}  O2 ={CITY-NAME} 

3 I3={ZIP} O3={CITY-NAME, LONGITUDE, LATITUDE} 

4 I4={ZIP} O4={WEATHERREPORT} 

5 I5 ={CITY-NAME} O5={WEATHERREPORT} 

6 I6 = {CITY-NAME} O6 = {WEATHERREPORT, WEATHERREPORTSUBSCR} 

As stated previously, the user goal is the most important aspect to be considered. For example, 
suppose a user who wants to get the weather report of his city by providing the name and zip code of 
this city. Searching for operations that satisfy both the inputs and outputs can be too restrictive. 
Hence, we did not consider this case when designing the similarity functions. 
FullSim similarity can be considered as the second best solution, since it includes the expected 
outputs and some inputs of the request. Operations 4 and 5 are, in this case, two potential candidates. 
If no operation meets these criteria, the user can relax the constraints on the goal. Suppose that 
operations 4 and 5 are unavailable, operation 6 which is similar with excess (ExcessSim) to the 
request, may be the second possibility. It provides a subscription in addition to the weather report. The 
user may not be interested by this result if he is looking for a free service and if the subscription is a 
paying service. In another cases, he might be interested in additional outputs such as a list of weather 
reports for nearby cities, for example. 



If the user is always searching for a weather report, but he can only provide a zip code. When 
operation 4 is unavailable, then no operation can be found using FullSim, PartialSim or ExcessSim 
similarities. In this case, operation 5 can satisfy the need. It has a relational similarity (RelationSim) 
with the request because its outputs are identical to the goal, but inputs have nothing in common. This 
operation cannot be used alone, but it can leads to the goal if it is composed with other operations. In 
this case, operation 1 can first be invoked and its output parameter, a city name, used to invoke 
operation 5. 

It is important to highlight that the proposed similarity functions have been designed to be 
complementary. FullSim function is the best solution. Then, PartialSim, ExcessSim and RelationalSim 
functions can give satisfaction to specific situations that are directly related to the context, as we have 
seen in the example above. 

3 STRUCTURE OF THE SIMILARITY NETWORKS  

We first present the Web services benchmark used in our experiment. Four similarity networks 
corresponding to the four similarity functions are built from these data. We provide a global view of the 
networks and we make a comparison between the similarity networks components and the notion of 
domain used in Web service classification. Concentrating on the components, we then take a local 
point of view by studying and comparing the structure of the components from the different networks.  

The similarity networks are extracted from SAWSDL-TC [7]. This SAWSDL test collection comes from 
SemWebCentral, an open source development Web site for the semantic Web. SAWSDL-TC is a 
service retrieval collection to support the evaluation of the performance of SAWSDL semantic Web 
service matchmaking algorithms. Although it has not been designed to test Web services substitution 
models, it best suits our requirements. It is partially composed of real-world Web services that are 
semantically described. The sets of Web services with similar functionalities are large enough to form 
reasonable communities. It contains 894 single operation descriptions and 654 are classified into 7 
domains. Among them, economy, education and travel, contain more than 80% of the descriptions. 
Communication, food, medical and weapon contain the remaining 20% and their content is relatively 
uniform. Economy, education, travel and communication are respectively organized into 10, 5, 6 and 2 
sub-domains.  

3.1 Global Structure 

The networks exhibit the same structure. A set of small components stand along with isolated nodes. 
Tab. 2 presents the number of components and proportion of isolated nodes of the networks. Isolated 
nodes are quite numerous in all the networks. According to these results we can distinguish two types 
of networks. The first one includes the FullSim, PartialSim and ExcessSim networks while RelationSim 
is on the second group. Indeed, in the former the networks exhibit similar basic properties. PartialSim 
presents the lowest proportion of isolated nodes followed by ExcessSim then Fullsim. This behavior is 
in accordance with the restrictions imposed by the similarity definitions. In other words, there is more 
Web services that share common output and common inputs than Web services with exactly the same 
outputs. The differences observed between PartialSim and ExcessSim is problably due to a tougher 
constraint on the inputs in the later. Similarly, the number of components is quite comparable. 
Compared to the networks in the first group, RelationSim is quite different. It has at least two times 
less isolated nodes and the number of components is two times higher. This result suggests that there 
is a lot of operations that can be used in a substitution process through a composition. It implies to 
provide other operations to make the connection between the inputs of the desired operation and the 
inputs of the one extracted from the RelationSim Network.  

Tab. 2. Basic properties of the similarity networks. 

 FullSim PartialSim ExcessSim RelationSim 

Proportion of isolated nodes 75% 57% 62% 31% 

Number of components 42 59 66 121 

Note that the distribution of the operations does not reflect the organization of the collection into 
domains. This structure rather reflects the decomposition of the collection into a reasonable number of 
sets of similar operations. This is an interesting property. If networks had been composed only of 
isolated nodes or if we had observed the presence of a giant component, those situations will have 
lead to an inefficient distribution of the operations. The notion of domain is hence not relevant for 
substitution.  



3.2 Local Structure 

In order to have a more detailed idea on the influence of the different similarity functions on the 
networks topology, we investigate and compare the structure of the components. Results show that 
we can distinguish two types of networks according to the local structure. In FullSim and RelationSim 
networks, components are organized into cliques. They are dominated by stars in PartialSim and 
ExcessSim networks. Fig. 2 presents FullSim and ExcessSim networks, without the isolated nodes, 
that clearly illustrate those two situations. 

 

 
4 FullSim  

 

 
4.1 ExcessSim 

Fig. 2. FullSim and ExcessSim similarity networks where isolated nodes have been discarded. 

A. Clique as a basic pattern 

The clique basic pattern in the FullSim and RelationSim networks give rise to different situations. To 
illustrate this feature, we present two components of the FullSim network. 

The first one is shown on Fig. 3. It contains the get_BOOK and getEBook operations which form a 4-
clique. They all produce a single parameter, Book, and they share at least one input parameter. The 
getEbook operations signatures are identical while getBook and getEbook have one common input 
parameter (Title). This component includes operations that are all similar according to the FullSim 



definition. They are all substitutable. If one wants to choose one of them for substitution, they can be 
distinguishable by their QoS features. 

 

 

 

 getEBook get_BOOK  

Input parameters Title, User Title 

Output parameters Book Book 
 

Fig. 3. A 4-clique component of the FullSim network and its operations signature. 

The second component on Fig. 4 contains six operations named get_LENDING. They are organized 
as follow: two 3-cliques and one 2-clique. The six operations have a single and same output 
parameter (Lending). On the right side of the figure, the links between the six operations are labeled 
by the concept of the input parameters shared by two adjacent operations. Unlike in the previous 
case, operations in this component are not all similar according to the Fullsim definition. Only 
operations that are within a clique follow this definition. This component includes three sets of similar 
operations which are organized into cliques. Two operations that are not in the same clique are similar 
according to the RelationSim definition. They have common outputs but their inputs do not overlap. 
Hence, when searching for substitutable operations in a FullSim component, all the cliques must be 
considered independently. 

 

Fig. 4. A component of the FullSim network with 3 cliques (links labels are common inputs of two 
adjacent operations).  

Distribution of similar operations within components allows classifying them according to their 
functionality. A component is a set of operations that have identical outputs. Operations with at least 
one common input are grouped within cliques in this component. A component is not a monolithic 
block of similar operations. It can be decomposed into a set of communities characterized by a clique. 
The clique pattern in the components allows a finer characterization of the notion of operations 
community. 

Note that in the RelationSim network, the clique organization is more pronounced than in the FullSim 
network and some big components form a complete graph. 

B. Star as a basic pattern 

The structure of the components in PartialSim and ExcessSim networks clearly differs from the 
previous ones. Whereas FullSim and RelationSim components are clique-like, PartialSim and 
ExcessSim components are rather organized as stars.  We consider the PartialSim network in order to 
illustrate the two most typical situations observed in these cases.  

Fig. 5 shows a star component of the PartialSim network. The get_FILM central operation produces 
less output parameters compared to peripheral operations. It produces only the parameter Film while 
the five others produce additional ones. It also has common input parameters with the peripheral 
operations. In this case, these six operations share a unique parameter (Title). The peripheral 
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operations have a unique and same potential substitute. This substitute, which is pointed by the 
others, can replace them being aware that it provides less output that may be desired.  

 

 
 

 Output parameters 

1 Film 

2 Film, MaxPrice, Quality 

3 Film, TaxedFreePrice, Qualit 

4 Film, Price, Quality 

5 Film, RecommendedPrice, Quality 

6 Film, TaxedPrice, Quality 
 

Fig. 5. A 6-nodes star-like component of the PartialSim network and its operations output parameters. 

Fig. 6 shows a component with 15 nodes made up with nested stars. Four operations may be replaced 
by others: get_DESTINATION_HOTEL, get_ACTIVITY_HOTEL, and two get_SPORTS_HOTEL 
operations. Unlike in the previous example, this component contains several substitutes. Some may 
replace only one operation; the get_HOTEL at the left end side is only a substitute for 
get_ACTIVITY_HOTEL. Others may replace several operations; all the get_HOTEL operations of the 
right end side can be substitutes for get_DESTINATION_HOTEL and the two get_SPORTS_HOTEL 
operations. Like for the clique organization, the concept of similarity can be refined within a 
component. It occurs when the component does not simply contain a simple basic pattern, but a more 
complex structure built from this pattern. 

 

Fig. 6. A 15-nodes component of the PartialSim network with nested stars. 

When observing the same components in the ExcessSim network, they differ in two points. The links 
are oppositely oriented and some of them disappear if one operation has more input parameters than 
the one to which it is compared.  

5 CONCLUSION 

In this paper, we analyze the structure of similarity networks extracted from SAWSDL-TC1. The 
networks are built from a model that represents similarity relationships between Web services 
operations functionalities. Two operations are similar if they share common features regarding their 
input and output parameter sets. We defined a set of functions that represent different degrees of 
similarity between operations. We compared the structure of the networks obtained with the different 
similarity functions. This comparative study shows that the networks share the same global structure. 
They are characterized by a large number of isolated nodes. It evolves from 30% to 75% depending 
on the more or less restrictive definition of similarity function. The remaining nodes are organized into 
a number of small components of similar operations. From the components analysis, we identified two 
classes of networks. In FullSim and RelationSim networks, the organizational basic pattern is the 
clique while it is a star in PartialSim and ExcessSim networks. 

In clique structured networks, a component is a clique or a set of cliques. In a FullSim component, all 
the operations of a clique have identical output parameters and their input parameters overlap. Two 
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operations that do not belong to the same clique have disjoint input parameters. In the RelationSim 
network, components are strongly connected and can be complete graphs.  
In the star structured networks, a component is a star or a set of stars. In a PartialSim component, 
operations that are pointed by a link have less output parameters than the operations pointing toward 
them. Two linked operations have overlapping input parameters. Two operations that do not belong to 
the same star have disjoint input parameters. In an ExcessSim component, links are oppositely 
directed compared to the same component in the PartialSim network. Additionaly, some links 
disappear because of the restriction on the input parameters sets.  

This proposed classification reveals two levels of similarity. The first one is the component and the 
second one is the component basic pattern (clique or star). A basic pattern within a component is a 
community that groups a set of similar and substitutable operations.  

This analysis allowed an accurate understanding of the functional similarity relationships between 
Web services operations. We are extending this work by using the similarity networks as a structure to 
discover and substitute Web services during the composition process.  
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