
International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

DOI : 10.5121/ijwest.2011.2204 40

�

���������	����
�	��
������
����������	�����

�����	���
��

Hela Limam
1
 and Jalel Akaichi

2

1, 2 Department of Computer Sciences, ISG,SOIE,Tunis, Tunisia
1
hela.limam@isg.rnu.tn

 2
jalel.akaichi@isg.rnu.tn

ABSTRACT

This With the advance of Web Services technologies and the emergence of Web Services into the

information space, tremendous opportunities for empowering users and organizations appear in various

application domains including electronic commerce, travel, intelligence information gathering and

analysis, health care, digital government, etc. In fact, Web services appear to be s solution for integrating

distributed, autonomous and heterogeneous information sources. However, as Web services evolve in a

dynamic environment which is the Internet many changes can occur and affect them. A Web service is

affected when one or more of its associated information sources is affected by schema changes.

Changes can alter the information sources contents but also their schemas which may render Web services

partially or totally undefined. In this paper, we propose a solution for integrating information sources into

Web services. Then we tackle the Web service synchronization problem by substituting the affected

information sources. Our work is illustrated with a healthcare case study.

KEYWORDS

Web services, Synchronization, Schema changes, Healthcare .

1. INTRODUCTION

The incredible growth of the information space and the increasing number of available

information sources are factors which arise a growing interest for integrating information

sources into Web services in order to enhance collaboration and knowledge sharing between

enterprises . The emergence of Web services as a model for integrating heterogeneous web

information has opened up new possibilities of interaction and offered more potential for

interoperability. However, the organization into Web services raises problem of becoming

obsolete when changes occur on information sources. To avoid becoming obsolete, when

information sources change their contents and/or their schema, Web services have to be

substituted in order to ensure the integrity, the accessibility, the availability and the consistency of

the afforded information. We consider that a Web Service is affected when one or more of

its associated information sources are affected by schema changes. A critical challenge

therefore is to design a system able to substitute affected Web services. In our solution we aim

to propose a mediator able to integrate information sources into Web services while addressing

the synchronization issue for affected Web services based on EVE framework [1]. Since EVE

system proposes a prototype solution to automate view definitions rewriting thanks to Meta

knowledge about information space formed by information sources, to Meta knowledge about

user space constituted by evolving view definitions, and view synchronization algorithms [2][3].

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

41

We propose to take advantages of this approach and to adapt it in our context which is Web

services. Our system revolves around three main components which are:

� A Web services Meta Knowledge Base WSMKB containing Web services, information

sources and substitution constraints.

� A Web services View Knowledge Base WSVKB containing Web services and related

views definition.

� Web services synchronization algorithm AS²W substituting affected Web services after

schema changes using WSMKB and WSVKB constraints.

As illustration, we adopted a case study related to a domain characterized by a prominent need for

information integrity and availability: Healthcare services.

This paper is organized as follows: Section 2 describes the related .Section 3 introduces the Web

service model for gathering information sources. In section 4, we present the Web services

synchronization solution by presenting the middleware main components which are the WSMKB,

the WSVKB and the Web services synchronization algorithm and our illustration by the

healthcare application. In section 5, we introduce our Web services synchronization algorithm

AS2W. And section 6 concludes our work and presents some insights for future work.

2. RELATED WORKS

In the information space, data providers are autonomous. However , they usually have control

over the schemas of their information sources which raises the question of the influence of

schema changes, that can render affected view definition undefined [4][5][6]. Different

approaches for addressing this problem have been presented in the literature. Service

synchronization or substitution based on the functional properties of components has been

addressed by many authors [7, 8, 9, 10, 11]. What sets us apart from the proposed approaches is

that we aim at addressing the service synchronization problem taking into account the detection

of changes which can occur on information sources from which Web services are constructed. In

this context, EVE project [12][13], offers a generic framework within which a view adaptation is

solved when underlying information sources change their capabilities. It neither relies on a

globally fixed domain nor on ontology of permitted classes of data, both strong assumptions that

are often not realistic. Instead, views are built in the traditional way over a number of base

schemas and those views are adapted to base schema changes by rewriting them using

information space redundancy and relaxable view queries [14]. The benefit of this approach is

that no predefined domain is necessary, and a view can adapt to changes in the underlying data by

automatically rewriting user queries, thanks to synchronization algorithms. This framework has

opened up a new direction of research by identifying view synchronization as unexplored

problem of current view technology in the WWW. Our approach distinguishes itself from EVE

[12] by the fact that we rely on specific advanced applications on the WWW which are Web

services. Another novelty of our approach is to apply our work is the health care domain.

3. WEB SERVICES MODEL

In today’s collaborative environment, Web services appear to be a privileged mean to

interconnect applications across organizations. Web Services are software systems designed to

support interoperable machine-to-machine interaction over a network [15]. They are modular

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

42

applications with interface descriptions that can be published, located, and invoked across the

Web [16].

 Different formalisms are proposed in the literature for modelling Web services. In [17, 18, and

19], state machine formalism is used for the description of Web services. This choice is justified

by the fact that the state machine is simple especially to describe Web services conversation. The

states represent phases through it passes the service while interacting. The states are labelled with

logic names and the transitions are labeled with operations. In [20, 21], Web services are

modelled using state chart diagram which is a graphic representation of a state machine. The

service chart diagram is based on the UML state chart diagram to specify Web services

components. None of the studied formalisms can be suitable for modelling the changes that can

occur on Web services. In this section we introduce a novel approach for modeling and specifying

Web services.

This approach sheds the light on two types of behaviours which are presentation and dynamic

parts where:

� The dynamic Web service includes information sources access using views

� The static Web service part contains the presentation components

Web service presentation and dynamic parts are executed iteratively as given in Figure 1

While (true)

 { Presentation part;

 Dynamic part;

 Vi // views call

 }

Figure 1. Web services model

Web services are constructed from views which are built from distributed, heterogeneous and

autonomous information sources. Each information source has its own schema composed of

relations and attributes. In several cases, Web service is undefined so it should be substituted by

another Web service as modelled in figure 2.

Figure 2 . Web service components relation

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

43

Types of relations between the different components are formalized in table 1

 Let WS be a Web service, WS = {V1 ,…,Vn}

With Vi: views called by Web service WS,

 |Vi| ≥ 1,

 n : total number of views called by WS.

Let V be a view, V = {IS1 ,…, ISn}

With ISi : information sources from which the view V is constructed.

 |ISi| ≥ 1,

 n : total number of information sources from which the view V is constructed����

Let SI be an information source, IS = {R1 ,…, Rn}

With Ri : relations which belong to the information source IS,

 |Ri| ≥ 1,

 n : total number of relations which belong to the information source IS.

Let R be a relation, R = {A1 ,…, An}

With Ai : the attributes which belong to the relation R,

 |Ai| ≥ 1,

 n : total number of attributes which belong to the relation R.

Let WS be a Web service, WS= {WS1 ,…, WSn}

with WSi the Web service replacement list.

Table 1. Relationship types between Web services components

In several cases, Web services are unavailable so we need to substitute them. In our case Web

services are undefined due to schema changes which may render views (dynamic part) undefined.

So Web service substitution reach on substituting Web Service dynamic part by rewriting

affected views.

Let WS be a Web service and Vi the set of views defined accessed by Web service dynamic part.

We suppose that the view V is undefined after schema changes. The Web service WS is

synchronized to the Web service WS’ with V rewritten on V’∈ Vi as shown in figure 3.

 Figure 3 . Web service synchronization

The substitute Web service can be equivalent (≡), superset (⊇), subset (⊆) or indifferent (≈) to the

initial Web service.

� The substitute Web service is equivalent (≡) to the initial Web service, if all dynamic part

views of the substitute Web service are equivalent to all dynamic part views of the initial

Web service.

While (true) While (true)

 { Presentation part; { Presentation part;

 Dynamic part; Dynamic part’;

 Vi // views call Vi’ // views call

 } }

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

44

� The substitute Web service is a superset (⊇) of the initial Web service, if at least one of

the dynamic part views of the substitute Web service is a superset of one of the dynamic

part views of the initial Web service.

� The substitute Web service is a subset (⊆) of the initial Web service, if at least one of the

dynamic part views of the substitute Web service is a subset of one of the dynamic part

views of the initial Web service.

� The substitute Web service is indifferent (≈) of the initial Web service, if all dynamic part

views of the substitute Web service are indifferent to all dynamic part views of the initial

Web service.

4. WEB SERVICES SYNCHRONIZATION FRAMEWORK

Web services are built from distributed, heterogeneous, autonomous information sources which

change continuously not only contents but also their schema which may render Web services

undefined. We propose therefore a synchronization process which consists on detecting schema

changes and substituting affected Web services. Only the two operations attribute deletion and

relation deletion affect Web services. The Web service synchronization algorithm searches

possible substitution of the affected component (attribute or relation) using WSMKB constraints

and WSVKB constraints.

Our solution takes the form of a middleware connecting Web services to information sources as

shown in figure 3 and is composed by:

� A Web services Meta Knowledge Base WSMKB containing Web services, information

sources and substitution constraints

� A Web services View Knowledge Base WSVKB containing Web services and related

views definition.

� Web services synchronization algorithm AS²W substituting affected Web services after

schema changes using WSMKB and WSVKB constraints.

Figure 4. The system architecture

4.1. Web services Meta Knowledge Base (WSMKB)

Web services Meta Knowledge Base WSMKB contains information sources description as given

in Figure 5; information sources joining the system must provide its structures and its contents to

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

45

be stored in the WSMKB. Relationships between information sources have to be added to

WSMKB as substitution rules as given in Figure 6, Figure 7 and Figure 8. The WSMKB

constraints are represented respecting a model called MISD [22, 23]. WSMKB can be organized

as follow:

� WS (WSid, WSISidList): Web services with information sources from which they are

built as given in Figure 9.

� IS (ISid, ISRidList): information sources and their included relations. Relations (Rid,

AttList): relations and their included attributes.

� The relationships between information sources or substitution constraints such as type

integrity constraints, join constraints and partial/complete constraints.

� Replacement (WSid, WSreplacementList): Web services and their substitution Web

services list as given in Figure 10.

In the following, we give an example of healthcare application. Each information sources have

their own schemas and contents.

S1

Patient (IdP, Name, Age, Tel, IdH)

Doctor (IdD, Name, Speciality)

Hospital (IdH, Name, Localization)

Doctor_Hospital (IdD, IdH)

Diagnostic (IdP, IdD, DateT, Result)

Operation (IdP, IdD, DateO, Result)

S2

Patient (IdP, Name, Age, Tel, IdH, Med_Resp)

Doctor (IdD, Name, Speciality, IdS)

Hospital (IdH, Name, Localization)

Doctor_Hospital (IdD, IdH)

Diagnostic (IdP, IdD, DateT, Result)

Operation (IdP, IdD, DateO, Result)

Service (IdS, Speciality)����

S3

Patient (IdP, Name, Age, Tel)

Doctor (IdD, Name, Speciality, Hospital, IdS)

Hospital (IdH, Name, Localization)

Patient_Hospital (IdP, IdH, IdD)

Diagnostic (IdP, IdD, DateT, Result)

Operation (IdP, IdD, DateO, Result)

Service (IdS, Speciality)

Figure 5. Information sources schemas.

A type integrity constraint of a relation R(A1,…,An) states that an attribute Ai is of domain type

Typei. It allows verifying substitution possibility of an attribute by another while synchronizing

Web services. A type integrity constraint is defined as follow:

TCR(A1,…,An) = R(A1,…,An) ⊆ A1(Type1)×…×An(Typen)

The type integrity constraints are expressed in the following

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

46

TC Type integrity constraints

TC1
TCS1.Patient(IdP, Name, Age, Tel, IdH) = Patient (IdP, Name, Age, Tel, IdH) ⊆ IdP(Number)

×Name(String)×Age(Number)×Tel(Number)×IdH(Number)����

TC2
TCS1.Doctor(IdD, Name, Speciality) = Doctor (IdD, Name, Speciality) ⊆ IdD(Number)

×Name(String) × Speciality(String)

TC3
TCS1.Hospital (IdH, Name, Localization) = Hospital (IdH, Name, Localization) ⊆ IdH(Number)

×Name(String) ×Localization(String)

TC4 TCS1.Doctor_Hospital (IdD, IdH)=Doctor_Hospital (IdD, IdH) ⊆ IdD(Number)×IdH(Number)

TC5
TCS1.Diagnostic (IdP, IdD, DateT, Result) = Diagnostic (IdP, IdD, DateT, Result)⊆

IdP(Number) ×IdD(Number)×DateT(Date)×Result(String)

TC6
TCS1.Operation(IdP, IdD, DateO, Result)=Operation(IdP, IdD, DateO, Result) ⊆ IdP(Number)

×IdD(Number)×DateO(Date)×Result(String)

TC7

TCS2.Patient(IdP, Name, Age, Tel, IdH, Med_Resp) = Patient(IdP, Name, Age, Tel, IdH,

Med_Resp) ⊆IdP(Number)×Name(String)×Age(Number)×Tel(Number)×IdH(Number)

×Med_Resp(Number)

TC8
TCS2.Doctor(IdD, Name, Speciality, IdS) = Doctor(IdD, Name, Speciality, IdS) ⊆ IdD(Number)

×Name(String)×Speciality(String)×IdS(Number)

TC9
TCS2.Hospital (IdH, Name, Localization) = Hospital(IdH, Name, Localization) ⊆ IdH(Number)

×Name(String)×Localization(String)

TC10 TCS2.Doctor_Hospital(IdD, IdH)=Doctor_Hospital (IdD, IdH) ⊆ IdD(Number) ×IdH(Number)

TC11
TCS2.Diagnostic (IdP, IdD, DateT, Result) = Diagnostic (IdP, IdD, DateT, Result) ⊆

IdP(Number) ×IdD(Number)×DateT(Date)×Result(String)

TC12
TCS2.Operation (IdP, IdD, DateO, Result) = Operation(IdP, IdD, DateO, Result) ⊆ IdP(Number)

×IdD(Number)×DateO(Date)×Result(String)

TC13 TCS2.Service(IdS, Speciality) = Service (IdS, Speciality) ⊆ IdS(Number) × Speciality(String)

TC14
TCS3.Patient(IdP, Name, Age, Tel) = Patient (IdP, Name, Age, Tel) ⊆ IdP(Number)

×Name(String) ×Age(Number)×Tel(Number)

TC15
TCS3.Doctor(IdD, Name, Speciality, Hospital, IdS) = Doctor (IdD, Name, Speciality, Hospital,

IdS) ⊆ IdD(Number) ×Name(String)×Speciality(String)×Hospital(Number)×IdS(Number)

TC16
TCS3.Hospital (IdH, Name, Localization) = Hospital (IdH, Name, Localization) ⊆ IdH(Number)

×Name(String)×Localization(String)

TC17
TCS3.Patient_Hospital (IdP, IdH, IdD) = Patient_Hospital (IdP, IdH, IdD) ⊆ IdP(Number)

×IdH(Number)×IdD(Number)

TC18
TCS3.Diagnostic(IdP, IdD, DateT, Result) = Diagnostic (IdP, IdD, DateT, Result) ⊆

IdP(Number) ×IdD(Number)×DateT(Date)×Result(String)

TC19
TCS3.Operation (IdP, IdD, DateO, Result) = Operation (IdP, IdD, DateO, Result) ⊆

IdP(Number) ×IdD(Number)×DateO(Date)×Result(String)

TC20 TCS3.Service(IdS, Speciality) = Service (IdS, Speciality) ⊆ IdS(Number)×Speciality(String)

Figure 6. Type integrity constraints.

Join constraint between two relations R1 and R2 states that attributes in R1 and R2 can be joined.

It allows verifying substitution possibility of a relation by another while synchronizing Web

services. Join constraint between two relations R1 and R2 is defined as follow: JCR1,R2 = (C1 AND

…AND Cn) In figure 7 we state the list of the join constraints related to our example

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

47

����WS1, {WS2, WS3}): The Web service WS1 can be replaced by the Web service WS2 or WS3

(WS2, {WS3}): The Web service WS2 can be replaced by the Web service WS3

TC Join constraints

JC1 S1.Patient.Name = S2.Patient.Name

JC2 S1.Patient.Name = S3.Patient.Name

JC3 S1.Doctor.Name = S2.Doctor.Name

JC4 S1.Doctor.Name = S3.Doctor.Name

JC5 S1.Doctor.Speciality = S2.Doctor.Speciality

JC6 S1.Doctor.Speciality = S3.Doctor.Speciality

JC7 S1.Hospital.Name = S2.Hospital.Name

JC8 S1.Hospital.Name = S3.Hospital.Name

JC9 S1.Hospital.Localization = S2.Hospital.Localization

JC10 S1.Hospital.Localization = S3.Hospital.Localization

JC11 S2.Service.Speciality = S3.Service. Speciality

Figure 7. Join constraints.

Partial/complete constraint between two relations R1and R2 states that the relation R1 (or a

fragment of the relation R1) is a subset, a superset or equivalent to the relation R2 (or a fragment

of the relation R2). Partial/complete constraint is defined as follow:

PCR1,R2 = (πAi1,…,Aik(σC(Aj1,…,Ajp)R1) θ πAn1,…,Ank(σC(Am1,…,Aml)R2))

TC Partial/ complete constraints

PC

1

PCS1.Patient,S2.Patient = (πIdP, Name, Age, Tel(S1.Patient) ⊆ πIdP, Name, Age, Tel(S2.Patient))

PC

2
PCS1.Doctor,S2.Doctor = (πIdD, Name, Speciality(S1.Doctor) ⊆ πIdD, Name, Speciality

(S2.Doctor))

PC

3

PCS1.Hospital,S2.Hospital=(πIdH, Name, Localization(S1.Hospital)⊇ πIdH, Name, Localization

(S2.Hospital))

PC

4
PCS1.Operation,S2.Operation=πIdP, IdD, DateO, Result(S1.Operation) ⊆ πIdP, IdD, DateO, Result

(S2.Operation))

PC

5
PCS2.Service,S3.Service = πIdS, Speciality(S2.Service) ⊇ πIdS, Speciality (S3.Service))

Figure 8. Partial/ complete constraints.

Figure 9. Relation between Web services and information sources.

Figure 10. Web services substitution constraints.

4.2. Web services View Knowledge Base WSVKB

The Web Services View Knowledge Base WSVKB contains views definition using E-SQL and

relations between Web services and its accessed views as given in Figure 12. E-SQL [22]

����WS1, {S1, S2}): The Web service WS1 is construct from information sources S1 and S2

(WS2, {S1, S2}): The Web service WS2 is construct from information sources S1 and S2

(WS3, {S3}) : The Web service WS3 is construct from information sources S3

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

48

CREATE VIEW V [(column_list)] [VE= [‘⊇’ | ‘⊆’ | ‘≡’ | ‘≈’] AS

SELECT Attribute_Name [(AD = [true | false], AR = [true | false])]

 [, Attribute_Name [(AD = [true | false], AR = [true | false])]…]

FROM Relation_Name [(RD = [true | false], RR = [true | false])]

 [, Relation_Name [(RD = [true | false], RR = [true | false])]…]

WHERE Primitive_Clause [(CD = [true | false], CR = [true | false])]

 [, Primitive_Clause [(CD = [true | false], CR = [true | false])]…];

(WS1, {V1, V2, V3}): Web service WS1 is constructed from V1, V2 and V3.

(WS2, {V3, V4, V5}): Web service WS2 is constructed from V3, V4 and V5.

(WS3, {V6}): Web service WS3 is constructed from V6.

language allows user preferences inclusion in views definition to indicate how views can evolve

after schema changes.

E-SQL is an extension of SELECT-FROM-WHERE and respect the following syntax:

Figure 11. Structure of E-SQL query.

In an E-SQL query, each attribute, relation or condition has two evolution parameters. The

dispensable parameter indicates if view components can be conserved (XD=False) or dropped

(XD=True) from the substitute view. The replaceable parameter indicates if view components can

be substituted (XR=True) or not (XR=False). Here X can be an attribute, a relation or a condition

and the default value is False. View extension parameters VE proposed by E-SQL states that the

substitute view can be equivalent (≡), superset (⊇), subset (⊆) or indifferent (≈) to the initial

view.

WSVKB contents can be organized as follow:

� VIEW (VDid, VDText) : View definition using E-SQL.

� WS (WSid, VDidList) : Web services and their views definition list.

Example 1
We need to have doctors list from S1 having « Cardiologist » specialty, and accepting substitution

of the relation S1.Doctor by the relation S2.Doctor, and accepting substitution of the attribute

Name from the relation S1.Doctor by the attribute Name from the relation S2.Doctor.

CREATE VIEW V1 VE=’⊇’ AS

SELECT D.IdD, D.Name (AD=false, AR=true)

FROM S1.Doctor D (RD=false, RR=true)

WHERE (D.Speciality= “Cardiologist”) (CD=false, CR=true);

Example 2

We need to have hospitals list from S1 localized in « Tunis » and accepting substitution of the

relation S1.Hospital by the relation S2.Hospital, and accepting substitution of the attribute Name

from the relation S1.Hospital by the attribute Name from the relation S2.Hospital.

CREATE VIEW V2 VE=’⊆’ AS

SELECT H.IdH, H.Name (AD=false, AR=true)

FROM S1.Hospital H (RD=false, RR=true)

WHERE (H.Localization= “Tunis”) (CD=false, CR=true);

Figure 12. Relation between Web services and views.

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

49

4.3 Case Study

Web services synchronization consists on automatically rewriting or substituting Web services

affected after schema changes referring to WSMKB constraints and to WSVKB constraints.

The synchronization process consists on detecting schema changes (relations or attributes

deletion), detecting affected Web services and applying synchronization algorithm to determine

possible substitution of the affected Web services.

Case 1

Suppose that Name attribute from the relation S1.Doctor is deleted, then it’s substituted by Name

attribute from the relation S2.Doctor since [TCS1.Doctor(IdD, Name, Speciality)=Doctor(IdD,

Name, Speciality) ⊆ IdD(Number) × Name(String) × Speciality(String)] and [TCS2.Doctor(IdD,

Name, Speciality, IdS)= Doctor(IdD, Name, Speciality, IdS) ⊆ IdD(Number) × Name(String) ×

Speciality(String) × IdS(Number)] and [PCS1.Doctor,S2.Doctor=(πIdD, Name,

Speciality(S1.Doctor) ⊆ πIdD, Name, Speciality(S2.Doctor))] and [S1.Doctor.Name =

S2.Doctor.Name]. The view definition of V1 becomes:

CREATE VIEW V1’ VE=’⊇’ AS

SELECT D.IdD, D2.Name (AD=false, AR=true)

FROM S1.Doctor D (RD=false, RR=true),

 S2.Doctor D2 (RD=false, RR=true)

WHERE (D.Speciality= “Cardiologist”) (CD=false, CR=true) AND

 (D.IdD = D2.IdD

Case 2
Suppose that S1.Hospital relation is deleted, then it’s substituted by S2.Hospital relation since

[PCS1.Hospital,S2.Hospital = (πIdH, Name, Localization(S1.Hospital) ⊇ πIdH, Name,

Localization (S2.Hospital))]. The view definition of V2 becomes:

CREATE VIEW V2’ VE=’⊆’ AS

SELECT H2.IdH, H2.Name (AD=false, AR=true)

FROM S2.Hospital H2 (RD=false, RR=true)

 WHERE (H2.Localization= “Tunis”) (CD=false, CR=true);

5. WEB SERVICES SYNCHRONIZATION ALGORITHMS

Web services are composed by presentation and dynamic parts including information sources

access using views call. As previously said dynamic part includes services gathered from

information sources, the latter change continuously which may render views undefined then may

render Web services undefined and inaccessible. So these Web services must be substituted by

other ones.

Web services synchronization consists on substituting affected Web services referring to

constraints embodied into the WSMKB and into the WSVKB. So synchronization process

consists on detecting change and according to this change Delete_Attribute procedure or

Delete_Relation procedure will be executed as given in Algorithm 1. Only the two operators

delete attribute and delete relation are treated by our algorithm.

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

50

Algorithm 1 Synchronization

00. BEGIN

01. Input = {schema change}; /* changes can be an attribute deletion or a relation deletion */

02. Output = {synchronized services};

03. FOR each changes

04. IF (Input = attribute deletion) THEN

05. Delete_Attribute (A); /*A: deleted attribute*/

06. ELSE

07. Delete_Relation (R); /*R: deleted relation*/

08. END IF

09. END FOR

10. END

5.1. Relation deletion

The deletion of a relation R affects Web services if it appears in at least one of the views that

Web services dynamic part references. To synchronize Web services affected after a relation

deletion, we must verify if this relation is replaceable or not and if it’s dispensable or not. So we

must verify the evolution parameters; dispensable and replaceable parameters.

� If the relation is dispensable (RD = True) and not replaceable (RR = False) then this

relation can be omitted from the substitute view, then from the substitute Web service.

� If the relation is dispensable (RD = True) and replaceable (RR = True) then it’s

substituted if there is a substitution relation, else it can be omitted from the substitute

view, then from the substitute Web service.

� If the relation is indispensable (RD = False) and not replaceable (RR = False) then failure

will be returned and the Web service can’t be synchronized.

� If the relation R is indispensable (RD = False) and replaceable (RR = True) then if a

substitution relation S exists, then R will be substituted by the relation S, else failure will

be returned and the Web service can’t be synchronized.

A relation S can substitute a relation R if all attributes of the relation R which are indispensable

and replaceable (AD = False and AR = True) and appear in SELECT and WHERE clause have

substitute attributes in the relation S, and have the same type.

Relation deletion affects a set of Web services, so executing Delete_Relation procedure, we have

the affected one and Web services substitution will be done if it’s possible.

Algorithm 2 PROCEDURE Delete_Relation (R)

00. BEGIN

01. SA = SearchSA (R); /* search effected Web services*/

02. FOR each SA

03. Search_Substitution (SA, R); /* search Web services substitution */

04. END FOR

05. END

As given in Algorithm 3, affected Web services are those who are referenced by the deleted

relation. So SearchSA procedure will search affected Web services referring to constraints

embodied into the WSMKB.

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

51

 Algorithm 3 PROCEDURE SearchSA (R)

00. BEGIN

01. /* search in WSMKB Web services referenced by the relation R deleted*/

02. END

Web services synchronization reach on views synchronization, this synchronization is done

referring to preferences embodied into the WSVKB. So executing Serach_Substitution procedure

as given in Algorithm 4 and according to relation evolution parameters a set of treatments will be

executed.

Algorithm 4 PROCEDURE Search_Substitution (SA, R)

00. BEGIN

01. ListViews = {views containing R and appear in SA};

02. FOR each view V of ListViews

03. IF (RD = TRUE and RR = FALSE) THEN

04. Delete R from V;

05. ELSE IF (RD = TRUE and RR = TRUE) THEN

06. IF (Find _Relation (R, S)) THEN

07. Substitute (R, S);

08. ELSE

09. Delete R from V;

10. END IF

11. ELSE IF (RD = FALSE AND RR = FALSE) THEN

12. Return failure with msg "Web service can’t be synchronized";

13. ELSE IF (RD = FALSE AND RR = TRUE) THEN

14. IF (Find_Relation (R, S)) THEN

15. Substitute (R, S);

16. ELSE

17. Return failure with msg "Web service can’t be synchronized";

18. END IF

19. END IF

20. END FOR

21. END

As given in Algorithm 5, Find_Relation procedure will find in WSMKB a substitute relation to

the deleted one. It will be substitution if it exists in the WSMKB a relation that substitute the

deleted relation. So Replace procedure verifies if two relations are replaceable or not as shown in

algorithm 6.

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

52

Algorithm 5 Boolean PROCEDURE Find_Relation (in: R, out: S)

00. BEGIN

01. FOR each relation S

02. IF Replace (R, S) THEN

03. ListRelation = ListRelation + S;

04. END IF

05. END FOR

06. IF ListRelation = empty THEN

07. Return (FALSE);

08. ELSE

09. S = {relation ∈ ListRelation which best substitute R};

10. Return (TRUE);

11. END IF

12. END

Algorithm 6 Boolean PROCEDURE Replace (R, S)

00. BEGIN

01. ListAttributes = {attributes which appears in SELECT and WHERE clause and are

indispensables and replaceable};

02. IF the attributes of S substitute ListAttributes THEN

03. Return (TRUE);

04. ELSE

05. Return (FALSE);

06. END IF

07. END

As given in Algorithm 7, executing Substitute procedure, will substitute the attributes of the

deleted relation R that appears in the SELECT clause and the WHERE clause with the attributes

of S and will substitute the deleted relation R with the relation S.

Algorithm 7 PROCEDURE Substitute (R, S)

00. BEGIN

01. Replace the attributes of R with the attributes of S in the SELECT clause and the WHERE clause;

02. Replace the relation R with S;

03. END

5.2. Attribute deletion

A deleted attribute A can affects Web services if it appears in at least one of the views that Web

service dynamic part references. To synchronize Web service affected after an attribute deletion,

we must verify if this attribute is replaceable or not and if it’s dispensable or not. So we must

verify the evolution parameters; dispensable and replaceable parameters.

If the attribute is dispensable (AD = True) and not replaceable (AR = False) then this attribute can

be omitted from the substitute view, then from the substitute Web service.

If the attribute is dispensable (AD = True) and replaceable (AR = True) then it’s substituted if

there is a substitute attribute, else it can be omitted from the substitute view, then from the

substitute Web service.

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

53

If the attribute is indispensable (AD = False) and not replaceable (AR = False) then failure will be

returned and Web service can’t be synchronized.

If the attribute is indispensable (AD = False) and replaceable (AR = True) then this attribute will

be substituted if a substitute attribute exists, else failure will be returned and Web service can’t be

synchronized.

An attribute B from a relation S can substitute an attribute A from a relation R if these attributes

have the same types in other words if exists in WSMKB a type integrity constraint such that:

TC (R.A) = R (A) ⊆ A (type) and TC (S.B) = S (B) ⊆ B (type) and exists in WSMKB a join

constraint between the two attributes: JCR, S = (R.A = S.B)

Attribute deletion affects a set of Web services, so executing Delete_Attribute procedure, we

have the affected one and Web services substitution will be done if it’s possible.

Algorithm 8 PROCEDURE Delete_Attribute (A)

00. BEGIN

01. SA = SearchSA (A); /* search affected services */

02. FOR each SA

03. Search_Substitution (SA, A); /* search Web services substitution */

04. END FOR

05. END

As given in Algorithm 9, affected Web services are those who are referenced by the deleted

attribute. So SearchSA procedure will search affected Web services referring to constraints

embodied into the WSMKB.

Algorithm 9 PROCEDURE SearchSA (A)

00. BEGIN

01. /* search in WSMKB Web services referenced by the deleted attribute A*/

02. END����

Web services synchronization reach on views synchronization, this synchronization is done

referring to preferences embodied into the WSVKB. So executing Serach_Substitution procedure

as given in Algorithm 10 and according to attribute evolution parameters a set of treatments will

be executed.

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

54

Algorithm 10 PROCEDURE Search_Substitution (SA, A)

00. BEGIN

01. ListViews = {views containing A and appear in SA};

02. FOR each view V from ListViews

03. IF (AD = TRUE AND AR = FALSE) THEN

04. Delete A from V;

05. ELSE IF (AD = TRUE AND AR = TRUE) THEN

06. IF (Find_Attribute (A, B)) THEN

07. Substitute (A, B);

08. ELSE

09. Delete A from V;

10. END IF

11. ELSE IF (AD = FALSE AND AR = FALSE) THEN

12. Return failure with msg "Web service can’t be synchronized";

13. ELSE IF (AD = FALSE AND AR = TRUE) THEN

14. IF (Search_Attribute (A, B)) THEN

15. Substitute (A, B);

16. ELSE

17. Return failure with msg "Web service can’t be synchronized";

18. END IF

19. END IF

20. END FOR

21. END

As given in Algorithm 11, Find_Attribute procedure will find in WSMKB a substitute attribute

to the deleted one. It will be substitution if it exists in the WSMKB an attribute that substitute the

deleted attribute. So Replace procedure as shown in algorithm 12 verify if two attributes are

replaceable or not.

Algorithm 11 Boolean PROCEDURE Find_Attribute (in: A, out: B)

00. BEGIN

01. For each attribute B

02. IF Replace (A, B) THEN

03. ListAttributes = ListAttributes + B;

04. END IF

05. END FOR

06. IF ListAttributes = empty THEN

07. Return (FALSE);

08. ELSE

09. B = {attribute ∈ ListAttributes which best substitute A};

10. Return (TRUE);

11. END IF

12. END

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

55

Algorithm 12 Boolean PROCEDURE Replace (A, B)

00. BEGIN

01. IF (TC(R.A)=R (A) ⊆ A(type) AND TC(S.B)=S(B) ⊆ B(type) AND JCR, S

=(R.A=S.B)) THEN

02. Return (TRUE);

03. ELSE

04. Return (FALSE);

05. END IF

06. END

As given in Algorithm 13, executing Substitute procedure, will substitute the deleted attribute A

in the SELECT clause and/or the WHERE with B, will add the relation containing B to the

FROM clause and will add the join constraint between the relation containing the deleted attribute

A and the relation containing the attribute B.

 Algorithm 13 PROCEDURE Substitute (A, B)

00. BEGIN

01. IF A appears in SELECT clause THEN

02. Delete A from SELECT clause;

03. Add the relation S containing B to the FROM clause;

04. Add join constraint between R and S;

05. Add B to the SELECT clause;

06. ELSE IF A appears in WHERE clause THEN

07. C = {constraint containing A};

08. IF CD=TRUE AND CR = FALSE THEN

09. Delete the constraint containing A from the WHERE clause;

10. ELSE IF CD= FALSE AND CR = FALSE THEN

11. Return failure with msg "Web service can’t be synchronized";

12. ELSE

13. Delete constraint containing A from the WHERE clause;

14. Add the relation S containing B to the FROM clause;

15. Add join constraint between R and S;

16. Add the new constraint containing the new attribute B to the WHERE clause;

17. END IF

18. ELSE IF A appears in SELECT clause and in WHERE clause THEN

19. Delete A from SELECT clause;

20. Add the relation S containing B to the FROM clause;

21. Add join constraint between R and S;

22. Add B to the SELECT clause;

23. IF CD = TRUE and CR = FALSE THEN

24. Delete the constraint containing A from the WHERE clause;

25. ELSE IF CD = FALSE and CR = FALSE THEN

26. Return failure with msg "Web service can’t be synchronized";

27. ELSE

28. Delete the constraint containing A from the WHERE clause;

29. Add the new constraint containing the new attribute B to the WHERE clause;

30. END IF

31. END IF

32. END

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

56

6. IMPLEMENTATION

A prototype of the proposed system has been implemented. We used AXIS 1.1 which is Java

platform for creating and deploying web services applications for creating Web services

 The graphical user interface, the WSMKB, the WSVKB, and the view synchronizer are

implemented using Java, and the participating ISs are built on Microsoft Access. The

communication between the system and the information space is via JDBC. The view

synchronization algorithms for the different basic schema changes presented in Section 7 have

been implemented.

7. CONCLUSION

 In this paper we proposed a solution to the problem of Web services synchronization caused

by changes which can occur to information sources from which Web services are built and

which may render Web services partially or totally inaccessible .

We have presented as solution a middleware connecting Web services to information sources.

The middleware is composed by a Web service Meta Knowledge Base WSMKB, a Web Service

View Knowledge WSVKB and Web services synchronization algorithms. Our model proved the

feasibility of marrying Web services concepts, and the EVE approach [12] which offers a solid

foundation for addressing the general problem of how to maintain views in dynamic

environments.

Future work focus on a total synchronization of Web Services and will not be limited to the two

operations attribute deletion and relation deletion which affect Web service. We also intend to

develop algorithms for view maintenance of the view extent under both schema and data changes

of the information sources.

REFERENCES

[1] Amy J. Lee,Anisoara Nica,A. Rundensteiner, “The EVE Approach: View Synchronization in

Dynamic Distributed Environments”,IEEE Transactions on Knowledge and Data Engineering,

2002,pp.931-954.

[2] X. Zhang, E. A. Rundensteiner, L. Ding, “PVM: Parallel View Maintenance Under Concurrent

Data Updates of Distributed Sources, in Data Warehousing and Knowledge

Discovery”,Proceedings, 2001,pp. 230–239.

[3] A. J. Lee, A. Nica, and E. A. Rundensteiner, “The EVE Framework: View Evolution in an

Evolving Environment”, Technical Report WPI-CS-TR-97-4, Worcester Polytechnic Institute,

Dept. of Computer Science, 1997.

[4] J. A. Blakeley, P.-E. Larson, and F. W. Tompa. “Efficiently Updating Materialized Views”.

Proceedings of SIGMOD, 1986, pp. 61–71.

[5] Y. Zhuge, H. Garc´ıa-Molina, and J. L. Wiener, “The Strobe Algorithms for Multi-

SourceWarehouse Consistency”,In International Conference on Parallel and Distributed

Information Systems, 1996 pp. 146–157.

[6] D. Agrawal, A. El Abbadi, A. Singh, and T. Yurek. “Efficient View Maintenance at Data

Warehouses”,In Proceedings of SIGMOD, 1997, pp. 417–427.

[7] B. Benatallah, F. Casati, and F. Toumani, “ Representing,analysing and managing web service

protocols”.,Data Knowl.Eng, 2006, pp. 327–357.

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

57

[8] L. Bordeaux, G. Salaun, D. Berardi, and M. Mecella, “When are two web services compatible”

Lecture Notes in Computer Science, 2005, pp. 15–28.

[9] F. Liu, L. Zhang, Y. Shi, L. Lin, and B. Shi, “Formal analysis of compatibility of web services

via ccs”. In Proc. of theInternational Conference on Next Generation Web Services Practices,

IEEE Computer Society, 2005, pp. 143.

[10] A. Martens, S. Moser, A. Gerhardt, and K. Funk, “ Analyzing compatibility of bpel processes”.

In International Conference on Internet and Web Applications and Services, 2006.

[11] J. Pathak, S. Basu, and V. Honavar, “ On context-specific substitutability of web services” In

Proc. of the International Conference on Web Services,. IEEE Computer Society, 2007, pp. 192–

199.

[12] E. A. Rundensteiner, A. J. Lee, and A. Nica,“ On PreservingViews in Evolving Environments”,In

Proceedings of 4th Int, Athens, Greece,1997, pp.13.1–13.11.

[13] A. Koeller and E. A. Rundensteiner,“ History-Driven View Synchronization”, Springer Verlag ,

Greenwich, UK,2000, pp. 168–177.

[14] A. Nica,“View Evolution Support for Information Integration Systems over Dynamic Distributed

Information Spaces”,PhD thesis, University of Michigan in Ann Arbor, in progress 1999.

[15] W3C. Web Services Architecture, URL: http://www.w3.org/TR/ws-arch/,2004.

[16] Jean Dollimore, Tim Kindberg, and George Coulouris. “Distributed Systems Concepts and

Design”. Addison Wesley/Pearson Education, 4th edition, 2005.

[17] Boualem Benatallah, Fabio Casati, Farouk Toumani. “Web Service Conversation Modeling”.

Published by the IEEE Computer Society ,2004.

[18] Boualem Benatallah, Fabio Casati, Farouk Toumani, and Rachid Hamadi. “Conceptual Modeling

of Web Service Conversations”. CAiSE ,2003

[19] Julien Ponge. “Modeling and Analyzing Web Services Protocols”,2005.

[20] Djamal Benslimane, Zakaria Maamar, Chirine Ghedira. “A View-based Approach for Tracking

Composite Web Services”. Proceedings of the Third European Conference on Web Services

(ECOWS’05). 2005.

[21] Z. Maamar, B. Benatallah, and W. Mansoor. “Service Chart Diagrams - Description &

Application”. In Proceedings of The Alternate Tracks of The 12th International World Wide Web

Conference (WWW’2003), 2003.

[22] E. a. Rundensteiner, A. J. Lee and A. Nica. “The EVE Framework: View Evolution in an

Evolving Environment”. Technical Report WPI-CS-TR-97-4. December 1997.

[23] Anisora Nica, Amy J.Lee et Elke A. Rundensteiner. “The CVS Algorithm for View

Synchronisation in Evolvable Large-Scale Information System”. Technical Report WPI-CS-TR-

97-8. September 1997.

����

�

�

